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1. Orientation

This is the final abstract algebra handout for this term. You’re meant to
tackle it in Weeks 7 and 8. In this handout we revise symmetric groups.
We’re going to revise the main definitions and theorems, and also how to
compute with permutations. But we’ll also revise/study the proofs. I’m
asking you to make a special effort to know the proofs.

What’s the point of knowing proofs? Of course a proof convinces us of
the theorem’s truth. It’s true that we can become convinced by reading
the proof, checking that it’s correct, and then forgetting the proof and just
remembering the theorem. But this is dangerous. It separates what’s true
from why it’s true. If you do this, then after a while the maths you know
will be a collection of ‘facts’ and sometimes memory can play tricks; is the
‘fact’ really true or have you misremembered? Have you missed out a crucial
hypothesis? This will not happen if the proof is at your mental finger-tips.
You just go through the steps of the proof in your mind (or on paper) and
that will allow you to reconstruct the hypotheses and verify the conclusion
of the theorem.

Much of the process of creating maths is about recycling arguments that
you’ve seen before and adapting them to new settings. These arguments are
contained in the proofs; the statements of the theorems do not contain any
arguments. So knowing proofs also helps you discover or create new maths.

When I say ‘know proofs’ and ‘remember proofs’ I don’t mean rote mem-
orization. I mean that you understand a proof and remember its key points
well enough so that you can reproduce it. We’ll talk more about that later.

2. Symmetric Groups

We revise some basic facts about symmetric groups and permutations. For
more details see Chapter XIV of the lecture notes.

Definition. Let A be a set. We let Sym(A) be the set of bijections σ : A→
A. This is called the symmetric group on A. An element σ ∈ Sym(A) is
called a permutation of A.

Theorem 1. Let A be a set. Then (Sym(A), ◦) is a group where
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• ◦ denotes composition of functions;
• the identity element is the bijection

idA : A→ A, idA(a) = a for all a ∈ A.
• the inverse of σ ∈ Sym(A) is the unique bijection σ−1 ∈ Sym(A) that

satisfies
σ ◦ σ−1 = σ−1 ◦ σ = idA.

Proof. This theorem is an easy exercise. Most of the facts that you need
concerning bijections and their inverses is actually in Sections 6.3 and 6.4 of
your Foundations lecture notes. �

Definition. Let n ≥ 1. Let Sn = Sym({1, 2, 3, . . . , n}). We call Sn the n-th
symmetric group.

Theorem 2. #Sn = n!.

Proof. The proof of this is so intuitive that you have no excuse not to know it.
The elements of Sn are the bijections from {1, 2, . . . , n} to itself. However, as
{1, 2, . . . , n} is finite, a function σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection
if and only if it is an injection. This is sometimes called the pigeon-hole
principle (Proposition 6.7 of your Foundations lecture notes).

Thus Sn is the set of injections σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Let σ
be such an injection. There are n choices for σ(1). Once we have chosen
σ(1) we must impose σ(2) 6= σ(1) since σ is an injection. So there are n− 1
choices for σ(2), and similarly n − 2 choices for σ(3), . . . , and 1 choice for
σ(n). Thus the number of elements of Sn is

n× (n− 1)× (n− 2)× · · · × 1 = n!.

�

3. Matrix Notation for Permutations

Let a1, a2, . . . , an be the numbers 1, 2, . . . , n in some order. We shall use
the notation (

1 2 3 · · · n
a1 a2 a3 · · · an

)
to denote the permutation (i.e. element of Sn) that sends 1 to a1, 2 to a2,
. . . , and n to an.

Example 3. Let

ρ =

(
1 2 3 4
3 1 2 4

)
, µ =

(
1 2 3 4
1 4 2 3

)
∈ S4.

Although we’re representing elements of S4 as 2 × 4 matrices, never forget
that these are bijections from {1, 2, 3, 4} to itself. To find out what ρ, µ do
just look at the columns:

(1) ρ(1) = 3, ρ(2) = 1, ρ(3) = 2, ρ(4) = 4,
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µ(1) = 1, µ(2) = 4, µ(3) = 2, µ(4) = 3.

Now let us compute ρµ. This means ρ ◦ µ but we don’t usually write the
composition symbol ◦. By definition of function composition, (ρµ)(a) =
ρ(µ(a)); i.e. we apply µ first then ρ. So

(ρµ)(1) = ρ(µ(1)) = ρ(1) = 3;

(ρµ)(2) = ρ(µ(2)) = ρ(4) = 4;

(ρµ)(3) = ρ(µ(3)) = ρ(2) = 1;

(ρµ)(4) = ρ(µ(4)) = ρ(3) = 2.

Thus

ρµ =

(
1 2 3 4
3 4 1 2

)
.

Let’s compute ρ−1. From (1),

1 = ρ−1(3), 2 = ρ−1(1), 3 = ρ−1(2), 4 = ρ−1(4).

Thus

ρ−1 =

(
1 2 3 4
2 3 1 4

)
.

Exercise 1. With ρ and µ as above, compute µρ and µ−1.

4. Cycle Notation for Permutations

Definition. Let a1, a2, . . . , ak be distinct elements of the set {1, 2, . . . , n}.
The permutation that sends a1 to a2, and a2 to a3, and a3 to a4, . . . , and ak−1
to ak and ak to a1, and fixes all other elements of {1, 2, . . . , n} is denoted
by (a1, a2, . . . , ak) and called a cycle of length k.

Example 4. Let µ = (1, 4, 5) ∈ S5. When you try to visualize µ in your
head, what mental picture do you see? Perhaps you see the picture in Fig-
ure 1. This picture is incomplete, because although it tells you what µ does
to 1, 4, 5, and it doesn’t convey that µ fixes 2 and 3.

1

4

5

Figure 1. An incomplete picture for the cycle (1, 4, 5) ∈ S5.
The picture tells you that (1, 4, 5) cyclically permutes 1, 4, 5,
but it doesn’t tell you what happens to 2 and 3.

The complete picture for µ = (1, 4, 5) ∈ S5 is given by Figure 2.
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1

4

5
2 3

Figure 2. A complete picture for the cycle (1, 4, 5) ∈ S5. It
cyclically permutes 1, 4, 5, but fixes 2, 3.

Example 5. Note that there is some ambiguity in cycle notation, namely:

(2) (a1, a2, . . . , ak) = (a2, a3, . . . , ak, a1) = (a3, a4, . . . , ak, a1, a2) = · · ·

Why? Because they are identical as functions from {1, 2, . . . , n} to itself.
Thus

(1, 3, 4, 2) = (3, 4, 2, 1) = (4, 2, 1, 3) = (2, 1, 3, 4).

However, this is not the same as (1, 4, 3, 2). For two cycles to be equal
they need to cycle through precisely the same numbers in the
exactly same order, but the starting point does not matter.

Example 6. A cycle of length 1 is just the identity element id of Sn. Indeed,
(a) just sends a to itself, and sends every member of {1, 2, . . . , n} \ {a} to
itself, so it is just the identity map. Hence

(1) = (2) = (3) = · · · = (n) = id.

Definition. We call cycles (a1, a2, . . . , ak) and (b1, b2, . . . , b`) disjoint if ai 6=
bj for all i, j.

Theorem 7. Disjoint cycles commute.

Proof. Let σ = (a1, a2, . . . , ak) and τ = (b1, b2, . . . , b`), and suppose they are
disjoint. We’re required to show that στ = τσ. This means στ and τσ
are the same function {1, 2, . . . , n} → {1, 2, . . . , n}; i.e. we want to prove
that σ(τ(x)) = τ(σ(x)) for all x ∈ {1, 2, . . . , n}. The proof of this is just a
calculation, and we split it into three cases.

Case 1. x 6= ai for all i, and x 6= bj for all j. Then σ(x) = x and τ(x) = x.
Hence σ(τ(x)) = x = τ(σ(x)).

Case 2. x = ai for some i. As the cycles are disjoint x 6= bj for all j. Note
that

σ(τ(x)) = σ(τ(ai))

= σ(ai) ai is fixed by τ as it doesn’t equal any of the bj

= ai+1 because σ = (a1, a2, . . . , ak).
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Here we interpret ak+1 = a1. Also

τ(σ(x)) = τ(σ(ai))

= τ(ai+1) because σ = (a1, a2, . . . , ak)

= ai+1 ai+1 is fixed by τ as it doesn’t equal any of the bj.

Hence σ(τ(x)) = τ(σ(x)).

Case 3. x = bj for some j. This is similar to Case 2.
This completes the proof. �

Strategy for ‘remembering’ proofs. Some students memorize proofs for
exams, and often end up writing complete rubbish because they have misre-
membered some of the steps. A better and safer strategy is the following.

(I) Understand the proof.
(II) Ask yourself what the keys steps or ideas are.

(III) Make an effort to remember those key steps.

For me the key steps in the above proof are

• we want to show σ(τ(x)) = τ(σ(x));
• we divide into three cases according to whether x doesn’t appear in

either, or appears in σ or appears in τ ;
• After that it’s just calculation.

Try this strategy as you’re going through the proofs in this handout. Then
come back the next day and try to write down the proofs without looking
them up. It might seem pointless—you don’t have exams coming up and if
you don’t remember a proof you can google it. But remembering the key
points of proofs and how they fit together is an important part of mathe-
matical fluency, and will improve your understanding and confidence.

Theorem 8. Every permutation can be written as a product of disjoint cy-
cles.

We’ll delay the proof a little till we’ve seen an example and practiced
writing permutations as products of disjoint cycles.

Example 9. Let

ρ =

(
1 2 3 4 5 6 7 8 9 10 11
3 5 7 2 4 1 6 8 11 10 9

)
,

which we want to write as a product of disjoint cycles. We start with 1 and
apply ρ to it repeatedly:

(3) 1 7→ 3 7→ 7 7→ 6 7→ 1.

If we’re just looking at the set {1, 3, 7, 6} then ρ and the cycle (1, 3, 7, 6) do
exactly the same thing. However (3) does not tell us what ρ does to 2. We
start at 2 and apply ρ repeatedly:

(4) 2 7→ 5 7→ 4 7→ 2.
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Thus on the set {2, 5, 4}, the permutation ρ and the cycle (2, 5, 4) do the same
thing. Note that (2, 5, 4) is the identity on {1, 3, 7, 6} and (1, 3, 7, 6) is the
identity on {2, 5, 4}. Hence the product (or composition) (1, 3, 7, 6)(2, 5, 4)
does the same thing as ρ on {1, 3, 7, 6} ∪ {2, 5, 4} = {1, 2, 3, 4, 5, 6, 7}. The
product (1, 3, 7, 6)(2, 5, 4) and the permutation ρ both have the effect

(5) 1 7→ 3 7→ 7 7→ 6 7→ 1, 2 7→ 5 7→ 4 7→ 2.

We continue: (5) doesn’t tell us what ρ does to 8, 9, 10, 11. Note on the set
{8, 9, 10, 11}, the effect of ρ is

8 7→ 8, 9 7→ 11 7→ 9, 10 7→ 10,

which is the same as (8)(9, 11)(10).
Putting it all together, ρ and (1, 3, 7, 6)(2, 5, 4)(8)(9, 11)(10) agree on {1, 2, . . . , 11}

so they must be equal:

ρ = (1, 3, 7, 6)(2, 5, 4)(8)(9, 11)(10).

Since cycles of length 1 are equal to the identity, we usually omit them, so
we write

ρ = (1, 3, 7, 6)(2, 5, 4)(9, 11).

Note that there are many ways to write the answer correctly. First, as the
cycles are disjoint they commute, so we could have written for example

ρ = (2, 5, 4)(1, 3, 7, 6)(9, 11).

Also, because of the ambiguity in the cycle notation (2) we could also write
(again for example)

ρ = (5, 4, 2)(7, 6, 1, 3)(11, 9).

Remark. We did the example in way too much detail, just to make the
thought process clear. But you can just follow the arrows in your head and
simply write down the answer.

Exercise 2. Let

ρ =

(
1 2 3 4 5 6 7 8 9 10 11
7 2 8 11 4 10 1 5 3 9 6

)
Write ρ as a product of disjoint cycles.

We’re about to prove Theorem 8, but we first need a couple of lemmas.

Lemma 10. Let ρ ∈ Sn and a ∈ {1, 2, . . . , n}. Then there is some u ≥ 1
such that a, ρ(a), ρ2(a), . . . , ρu−1(a) are all distinct, but ρu(a) = a.

Proof. Consider the sequence

a, ρ(a), ρ2(a), ρ3(a), . . .

Every term in this infinite sequence is contained in the finite set {1, 2, . . . , n}.
Thus the sequence must contain repetition. Let ρu(a) = ρv(a) be the first
instance of repetition in the sequence, where 0 ≤ v < u. Apply ρ−v to both
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sides. We obtain ρu−v(a) = a. Note that 0 < u − v ≤ u. If u − v < u,
then ρu−v(a) = a is in fact an earlier instance of repetition in the sequence,
which contradicts our assumption. Therefore, u − v = u and so v = 0.
Hence ρu(a) = a. As this is the earliest repetition, a, ρ(a), . . . , ρu−1(a) are
distinct. �

Definition. Let ρ ∈ Sn and a ∈ {1, 2, . . . , n}. Let u be as in the statement
of Lemma 10. Denote

Orbρ(a) = {a, ρ(a), ρ2(a), . . . , ρu−1(a)};
this is called the orbit of a under ρ.

Example 11. In Example 9, the orbits of ρ are

Orbρ(1) = Orbρ(3) = Orbρ(7) = Orbρ(6) = {1, 3, 7, 6}
Orbρ(2) = Orbρ(5) = Orbρ(4) = {2, 5, 4}

Orbρ(8) = {8}, Orbρ(9) = Orbρ(11) = {9, 11}, Orbρ(10) = {10}.

Lemma 12. Let ρ ∈ Sn, and a, b ∈ {1, 2, . . . , n}. Then the orbits Orbρ(a),
Orbρ(b) are either equal or disjoint.

Proof. Let u be the smallest positive integer such that ρu(a) = a, and let v
be the smallest positive integer such that ρv(b) = b. Thus

Orbρ(a) = {a, ρ(a), ρ2(a), . . . , ρu−1(a)}, Orbρ(b) = {b, ρ(b), ρ2(b), . . . , ρv−1(b)}.
Suppose Orbρ(a) ∩ Orbρ(b) 6= ∅. Then ρi(a) = ρj(b) for some 0 ≤ i < u
and 0 ≤ j < v. Without loss of generality, j ≤ i. Thus b = ρk(a) where
k = i − j < u. Thus b ∈ Orbρ(a). Hence ρt(b) = ρk+t(a) ∈ Orbρ(a) for all
t, so Orbρ(b) ⊆ Orbρ(a). However, a = ρu−k(b), so a ∈ Orbρ(b) and so in a
similar way Orbρ(a) ⊆ Orbρ(b). Hence the two orbits are equal. �

Lemma 13. Let ρ ∈ Sn. The orbits of ρ form a partition of {1, 2, . . . , n}.

Proof. Note that a ∈ Orbρ(a). Thus the orbits are non-empty and their
union is {1, 2, . . . , n}. By Lemma 12, any two orbits are either disjoint or
equal. Thus the orbits form a partition of {1, 2, . . . , n}. �

Exercise 3. Let ρ be as in Exercise 2. Determine the orbits of ρ and check
that they form a partition of {1, 2, . . . , 11}.

Proof of Theorem 8. Let ρ be an element of Sn. Let C1, C2, . . . , Ck be the
distinct orbits of ρ. Choose ai ∈ Ci. Then for each i = 1, 2, . . . , k there is a
positive integer ui such that

Ci = Orbρ(ai) = {ai, ρ(ai), ρ
2(ai), . . . , ρ

ui−1(ai)}.
Let

µi = (ai, ρ(ai), ρ
2(ai), . . . , ρ

ui−1(ai)).

This is a cycle of length ui. Note that for i 6= j, the cycles µi, µj are disjoint,
since Ci, Cj are disjoint by Lemma 12.
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Consider the effect ρ has on the elements of Ci; this is the same as the
effect µi has on the elements of Ci. However, for j 6= i, the cycle µj fixes all
the elements of Ci. Thus the product µ1µ2 · · ·µi−1µiµi+1 · · ·µk has the same
effect as µi on the elements of Ci, and therefore the same effect as ρ on the
elements of Ci. As {1, 2, . . . , n} = C1 ∪ C2 ∪ · · · ∪ Cn, then ρ has the same
effect on {1, 2, . . . , n} as the product of disjoint cycles µ1µ2 · · ·µk. In other
words, ρ = µ1µ2 · · ·µk. �

Exercise 4. Let ρ and τ be the following permutations:

ρ = (1, 3)(2, 4, 5), τ = (1, 2, 3, 4, 5).

Determine ρ3 and τ−1ρ, writing your answers as products of disjoint cycles.

Exercise 5. Show that Sn is non-abelian for n ≥ 3. What about S2?

Exercise 6. (i) Let G be an abelian group. Let g, h be elements of G
having finite orders r, s. Show that the order of gh divides lcm(r, s).
Make sure it is clear where you have used the fact that G is abelian.

(ii) Give a counterexample to show that the corresponding statement need
not hold for non-abelian groups. Hint. Try S3.

(iii) Can you find an infinite group G with elements g, h of finite order such
that gh has infinite order? Hint. Revise the section on rotations and
reflections in Handout III.

5. The Parity of a Permutation

Definition. A transposition is a cycle of length 2. Thus it has the form
(a, b) where a 6= b.

Theorem 14. Every permutation can be written as a product of transposi-
tions.

Proof. The proof of this theorem is so easy that you have no excuse not to
know it. First we know that every permutation can be written as a product
of cycles (Theorem 8). So all we have to do is show that that every cycle
can be written as a product of transpositions. To see this, simply check the
formula:

(6) (a1, a2, . . . , ak) = (ak−1, ak)(ak−2, ak) · · · (a2, ak)(a1, ak).
�

Definition. We call a permutation even if it is a product of an even number
of transpositions, and odd if it a product of an odd number of transpositions.

The following theorem is really saying that the definition is a sensible one.

Theorem 15. A permutation is either even or odd, but can’t be both.

In Term 1 we proved Theorem 15 using permutation polynomials. That’s
a great proof. But to stop boredom from creeping in we’ll give another proof
of Theorem 15. First you need to do this exercise.
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Exercise 7. Let a, b, c, d be pairwise distinct members of the set {1, 2, . . . , n}.
Verify the following identities:

(c, d)(a, b) = (a, b)(c, d)(7a)

(b, c)(a, b) = (a, c)(b, c)(7b)

(a, c)(a, b) = (a, b)(b, c)(7c)

(a, b)(a, b) = id(7d)

Note that (u, v) = (v, u) for u 6= v. Thus we could’ve swapped the numbers
appearing in any of these transpositions and we would still have the same
identity. For example, (7b) can also be written as (c, b)(a, b) = (a, c)(b, c).

Remark. What are the identities (7a)–(7d) really saying? They are saying
that if I have any product of two transpositions ε · δ and a occurs in δ, then
I can either replace ε · δ by ε′ · δ′ where a appears only in ε′, or I can replace
ε · δ by id. To see this we need only convince ourselves that the identities
(7a)–(7d) cover all possible cases:

(a) ε, δ have no numbers in common; we use (7a).
(b) ε, δ have exactly one number in common, and that isn’t a; we use (7b).
(c) ε, δ have exactly one number in common, and that is a; we use (7c).
(d) ε, δ have both numbers in common; we use (7d).

The Transposition Game. Given a product of transpositions we are going
to play a game. We let a be the largest number appearing in any of the
transpositions. The identities (7a)–(7d) are our allowable moves, which
we apply to pairs consecutive transpositions where a appears in the right
hand transposition. Note that (7a)–(7c) move a so that it appears only in
left hand transposition. Also (7d) removes two of the occurrences of a. The
objective of the game is:

• either make a disappear altogether;
• or have only one occurrence of a which appears in the left-most trans-

position.

Let’s see some examples.

Example 16. We apply the allowable moves repeatedly to the product
(4, 3)(5, 1)(2, 3)(5, 2)(1, 5). Here throughout a = 5 (the biggest number ap-
pearing in the transpositions). We use the under-brace to highlight which
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pair of consecutive transpositions we’re applying the move to.

(4, 3)(5, 1)(2, 3) (5, 2)(1, 5)︸ ︷︷ ︸ = (4, 3)(5, 1)(2, 3) (5, 1)(1, 2)︸ ︷︷ ︸ using move (7c)

= (4, 3)(5, 1) (2, 3)(5, 1)︸ ︷︷ ︸(1, 2)

= (4, 3)(5, 1) (5, 1)(2, 3)︸ ︷︷ ︸(1, 2) using move (7a)

= (4, 3) (5, 1)(5, 1)︸ ︷︷ ︸(2, 3)(1, 2)

= (4, 3)(2, 3)(1, 2) using move (7d).

We stop now as we’ve got rid of the 5.
Let’s do a slightly different example. Consider the product (4, 3)(4, 1)(2, 3)(5, 2)(1, 5).

(4, 3)(4, 1)(2, 3) (5, 2)(1, 5)︸ ︷︷ ︸ = (4, 3)(4, 1)(2, 3) (5, 1)(1, 2)︸ ︷︷ ︸ using move (7c)

= (4, 3)(4, 1) (2, 3)(5, 1)︸ ︷︷ ︸(1, 2)

= (4, 3)(4, 1) (5, 1)(2, 3)︸ ︷︷ ︸(1, 2) using move (7a)

= (4, 3) (4, 1)(5, 1)︸ ︷︷ ︸(2, 3)(1, 2)

= (4, 3) (5, 4)(1, 4)︸ ︷︷ ︸(2, 3)(1, 2) using move (7b)

= (4, 3)(5, 4)︸ ︷︷ ︸(1, 4)(2, 3)(1, 2)

= (5, 3)(4, 3)︸ ︷︷ ︸(1, 4)(2, 3)(1, 2) using move (7b).

We stop now because 5 is present only in the left-most transposition.

Exercise 8. It’s your turn to play the transposition game:

(i) (1, 5)(4, 3)(2, 5)(2, 4)(3, 5).
(ii) (4, 5)(4, 3)(2, 5)(2, 4)(3, 5).

Lemma 17. Let τ1, τ2, . . . , τr be transpositions in Sn, and let a be the largest
number appearing in any of these transpositions. Then the product τ1τ2 · · · τr
is equal to a product µ1µ2 · · ·µs of transpositions where

(I) s ≤ r and s ≡ r (mod 2).
(II) Either

(i) a appears in µ1, but not in µ2, . . . , µs;
or

(ii) or a does not appear in any of the µi, and s < r.

Proof. This should be clear, except for a couple of points. Note that applying
any of the identities (7a)–(7c) preserves the number of transpositions, since
they simply replace the product of two transpositions by another product of
two transpositions. However, (7d) replaces the product of two transpositions
by id, and so reduces the number of transpositions by 2. Thus s = r − 2t,
where s is the final number of transpositions, and t is the number of times
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we have applied (7d). In particular s ≤ r and s ≡ r (mod 2). Moreover, if a
disappears altogether then we must have applied (7d) at least once, so t ≥ 1
so s < r. �

Lemma 18. Let τ1, . . . , τr be transpositions belonging to Sn. Suppose

τ1τ2 · · · τr = id.

Then r is even.

Proof. The proof is by strong induction on r. If r = 0 then r is even and
there is nothing to prove. Note that r = 1 is impossible, since a transposition
τ swaps two numbers and so can’t be the identity. We suppose r ≥ 2.

Let a be the largest number appearing in the transpositions τ1τ2 · · · τr. By
Lemma 17 there exists transpositions µ1, µ2, . . . , µs such that

(8) µ1µ2 · · ·µs = τ1τ2 · · · τr = id,

where moreover, either a appears only in µ1 or a does not appear in any of
the µi.

Suppose a appears only in µ1. Then µj(a) = a for j = 2, 3, . . . , s. Write
µ1 = (a, b), with b 6= a. Thus

a =id(a)

= (µ1µ2 · · ·µs)(a) from (8)

= (µ1µ2 · · ·µs−1)(µs(a))

= µ1µ2 · · ·µs−1(a) µs(a) = a

= · · ·
= µ1(a) = b

giving a contradiction as a 6= b.
It follows that a does not appear in any of the µi. In particular, we are in

case (ii) of Lemma 17. Hence s < r. Applying the inductive hypothesis to
µ1µ2 · · ·µs = id tells us that s is even. But again by part (I) of Lemma 17 we
know that r ≡ s (mod 2). Hence r is even. This completes the proof. �

We’re ready to prove Theorem 15.

Proof of Theorem 15. Suppose ρ ∈ Sn can be written as

ρ = ε1ε2 · · · εk = δ1δ2 · · · δ`
where the εi and the δj are transpositions. We’re required to show that k
and ` are both even or both odd. Now

id = ρρ−1

= (ε1ε2 · · · εk) · (δ1δ2 · · · δ`)−1

= ε1ε2 · · · εk · δ−1` · · · δ
−1
2 δ−11

= ε1ε2 · · · εk · δ` · · · δ2δ1 (δ−1 = δ for any transposition δ).
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We have written the identity as a product of k+` transpositions. Hence k+`
is even by Lemma 18. Therefore k, ` are either both odd or both even. �

Remark. It might seem that the proof of Theorem 15 in this handout is very
hard to learn. After all, you must have extremely good memory to be able to
memorize the identities (7a)–(7d). But do they really need to be memorized?
If you know the objective of these identities, is it not possible to reproduce
them? The idea is that we have a product of two transpositions (?, ?)(a, b). I
want to rewrite this as either the identity, or a product of two transpositions,
where a appears only in the left transposition. The case where I get the
identity is easy to remember or figure out: (a, b)(a, b) = id, which is saying
that if you swap twice you get the identity. Another case which is easy to
remember is when the two transpositions are disjoint (c, d)(a, b) = (a, b)(c, d)
because disjoint cycles commute. What about the other cases? Do I even
remember how many other cases there are? In the other cases we have (?, ?)
is not the same as (a, b) and not entirely disjoint from (a, b), so it has one
number in common. So we have exactly two other cases where that number
is a or that number is b:

(a, c)(a, b) = (a, ?)(?, ?), (b, c)(a, b) = (a, ?)(?, ?).

We don’t want a to appear in the transposition on the right, so question
marks are all bs and cs. It’s not hard anymore to figure out what the question
marks must be. As you can see, if you remember the ideas, you can work
out the details for yourself.

Exercise 9. Let ρ be a cycle of length k. Show that ρ even if k is odd, and
ρ is odd if k is even.

Exercise 10. Let ρ, σ ∈ Sn.

(i) Show that the identity id ∈ Sn is even.
(ii) Show that ρσ is even if and only if ρ and σ are both even or both odd.
(iii) Show that ρ−1 has the same parity as ρ.

Exercise 11. Let σ ∈ Sn be an odd permutation. Show carefully that the
order of σ is even.

6. The Alternating Group

Definition. We let An = {σ ∈ Sn : σ is even}. This is called the n-th
alternating group.

Theorem 19. An is a subgroup of Sn of index 2. The cosets of An in Sn
are An and

{σ ∈ Sn : σ is odd}.

Proof. The fact that An is a subgroup of Sn follows immediately from Exer-
cise 10.



13

Write
A′n = {σ ∈ Sn : σ is odd}.

We claim that, for all ρ ∈ Sn,

ρAn =

{
An if ρ is even

A′n if ρ is odd.

Once we have proved our claim, we will know that An has precisely two
cosets in Sn, and these are An and A′n. Thus in particular, the index of An
in Sn is 2.

Let’s prove the claim. Suppose ρ is even. Then ρ ∈ An. Hence ρAn and An
have the element ρ in common. But cosets are either disjoint or equal. Thus
ρAn = An. Suppose next that ρ is odd. We want to show that ρAn = A′n.
Equivalently we want to show that τ ∈ ρAn if and only if τ ∈ A′n. Of course,
any element τ of ρAn has the form τ = ρσ where σ is even. As ρ is odd,
τ = ρσ is odd (part (ii) of Exercise 10). Thus τ ∈ A′n. Conversely, suppose
τ ∈ A′n, and so τ is odd. Let σ = ρ−1τ . As ρ is odd, so is ρ−1 (part (iii) of
Exercise 10) and so σ = ρ−1τ is even. Hence σ ∈ An, so τ = ρσ ∈ ρAn. It
follows that ρAn = A′n, completing the claim’s proof. �

Lagrange’s theorem immediately allows us to deduce the following.

Corollary 20. #An = n!/2.

Exercise 12. Let ρ and τ be the following permutations:

ρ = (1, 3)(2, 4, 5), τ = (1, 2, 3, 4, 5).

Write ρ, τ as products of transpositions. Which of them belongs to A5?

Exercise 13. Show that An is non-abelian for n ≥ 4. What about A2 and
A3?

Exercise 14. Let

H1 = {σ ∈ A4 : σ3 = 1}, H2 = {σ ∈ A4 : σ7 = σ−5}.
Which of these is a subgroup of A4. Justify your answers.

Exercise 15. Let f be a polynomial in variables x1, . . . , x4. Let σ be a per-
mutation in S4. We define σ(f) to be the polynomial f(xσ(1), xσ(2), xσ(3), xσ(4)).
(For example, if f = x1 + x22 + x3x4 and σ = (1, 4)(2, 3) then σ swaps
x1 and x4, and swaps x2 and x3; thus σ(f) = x4 + x23 + x2x1.) Define
Stab(f) = {σ ∈ S4 : σ(f) = f}. This is called the stabilizer of f .

(a) Show that Stab(f) is a subgroup of S4.
(b) Write down the elements of Stab(f) for the following polynomials in

x1, . . . , x4:
(i) f = x1x2 + x3 + x4.

(ii) f = x24 + x1x2x3.
(c) Write down a polynomial f in x1, x2, x3, x4 such that Stab(f) = A4.
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(d) Show that there is no polynomial f in x1, . . . , x4 such that Stab(f) has
order 5.

(e) Prove or disprove the following statement: if f and g are polynomials
in x1, . . . , x4, and σ ∈ Stab(f + g), then σ ∈ Stab(f) and σ ∈ Stab(g).

7. Dn is a subgroup of Sn

x

y
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3
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1
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23

4

5 6

1

Figure 3. We place the regular n-gon in the plane so that
its centre coincides with the origin, and its vertex 1 lies on the
positive x-axis. In these pictures, n = 5 (top) and n = 6
(bottom).

Recall that Dn is the group of symmetries of the regular n-gon. We give
the vertices of the n-gon labels 1, 2, . . . , n (going anticlockwise). A symmetry
of the n-gon of the n-gon permutes 1, 2, . . . , n and so can be identified as an
element of Sn.
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For example, in D4, we used ρ1 to denote anticlockwise rotation around
the centre of the square through 90◦. Thus ρ1 sends vertex 1 to vertex 2,
vertex 2 to vertex 3, vertex 3 to vertex 4, and vertex 4 to vertex 1. So we
write ρ1 = (1, 2, 3, 4).

Recall our conventions of Handout 3. We place the regular n-gon in the
plane with its centre coinciding with the origin, and vertex 1 is on the positive
x-axis. See Figure 3 for illustrations. We used the symbol r to denote
anticlockwise rotation of the n-gon through an angle of 2π/n, and the symbol
s to denote reflection of the n-gon in the x-axis. Moreover,

Dn = {1, r, r2, . . . , rn−1} ∪ {s, rs, r2s, . . . , rn−1s}.

Exercise 16. (i) Write r and s as products of disjoint cycles.
(ii) For which values of n is Dn a subgroup of An?

8. Permutation Types

A permutation ρ ∈ Sn is said to have permutation type [α1, α2, . . . , αn]
if, when written as a product of disjoint cycles, ρ has α1 cycles of length 1, α2

cycles of length 2, . . . , αn cycles of length n. For example, in S11, the permu-
tation ρ = (1, 7)(3, 4, 5)(6, 11) has permutation type [4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0].
If you’re puzzled by the 4 (four cycles of length 1) it is because ρ fixes 2, 8,
9, 10 and so can be written as ρ = (2)(8)(9)(10)(1, 7)(3, 4, 5)(6, 11).

For example, possible permutation types for an element of S4 are

[4, 0, 0, 0], [2, 1, 0, 0], [0, 2, 0, 0], [1, 0, 1, 0], [0, 0, 0, 1].

Examples of permutations having these types are

(1)(2)(3)(4), (1)(2)(3, 4), (1, 2)(3, 4), (1)(2, 3, 4), (1, 2, 3, 4)

respectively. We write p(n) for the number of permutation types in Sn (this
is called the n-th partition number. From the above p(4) = 5.

Exercise 17. (i) Compute p(n) for n = 2, 3, 4, 5, 6.
(ii) Show that [α1, α2, . . . , αn] is a permutation type for some element of Sn

if and only if

(9) α1 + 2α2 + 3α3 · · ·+ nαn = n.

Exercise 18. Give a recipe for determining the parity (evenness or oddness)
of ρ ∈ Sn in terms of its permutation type [α1, α2, . . . , αn].

Hardy and Ramanujan proved an asymptotic formula for p(n):

(10) p(n) ∼
exp(π

√
2n/3)

4n
√

3
.

What does the notation ∼mean? Let {a(n)}∞n=1 and {b(n)}∞n=1 be sequences.

We say that they are asymptotic and write a(n) ∼ b(n) if limn→∞
a(n)
b(n)

= 1.

Exercise 19. (Optional, but I really think you should try it)
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(i) Write a program that computes p(n) given n (using any programming
language you like). Here are a couple of tips.
(a) The last thing you want to do is write down all n! permutations

and then compute their types. The number p(n) is the number of
solutions to the equation (9) in non-negative integers α1, α2, . . . , αn.

(b) From the Hardy–Ramanujan asymptotic you can see that p(n)
grows very quickly. Thus you should not expect your program to
run in reasonable time for big values of n. If you can compute p(50)
in less than a minute then you’re doing really well.

(ii) Let HR(n) be the right-hand side of (10). Plot p(n)/HR(n) against n
for a few values of n. Does it look like it is converging to 1?

9. Student led astray by lecturer (topic for reflection)

During a 2020–2021 Zoom lecture, the lecturer gets muddled and writes
out an incorrect proof (such blunders do occasionally happen in the heat
of the lecture). In the module’s end-of-year open book exam a student
reproduces the incorrect proof word for word and symbol for symbol. What
mark should the student get? (I originally wrote “What mark does the
student deserve?”, but the word “deserve” conveys connotations of guilt,
and I rephrased as I didn’t want to prejudice your deliberations before they
have even commenced.)


