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Hilbert's 7th problem

What kind of number is 2V2?
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Hilbert's 7th problem

What kind of number is 2V2?

More generally, if o and 3 are algebraic, what kind of number is a®?

Let's suppose that 8 ¢ Q and o # 0, 1.
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The Gel'fond-Schneider Theorem

Theorem (Gel'fond-Schneider, 1934)
Let o and 8 be algebraic numbers in C with a # 0,1 and 8 & Q. Then J

af is transcendental.
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Let o and 8 be algebraic numbers in C with a # 0,1 and 8 & Q. Then
aP is transcendental.

Here, o = €898 for any determination of the logarithm.
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The Gel'fond-Schneider Theorem

Theorem (Gel'fond-Schneider, 1934)

Let o and 8 be algebraic numbers in C with a # 0,1 and 8 & Q. Then
aP is transcendental.

Here, o = €898 for any determination of the logarithm.

Corollary

Let o, B be algebraic numbers in C different from 0,1 such that log o and
log G are linearly independent over Q. Then for all non-zero algebraic
numbers 7,8, we have

vlog o+ dlog 5 # 0.

7/58



Baker's Theorem

Theorem (Baker, 1966)

Let a1, p,...,amn be algebraic numbers from C, different from 0,1, such
that log a1, log ap, . . ., log oy, are linearly independent over Q. Then for
every tuple (Bo, 51, - - - Bm), different from (0,0, ...,0), we have that

Bo+ Pilogag + -+ Bmlogam, # 0.
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Linear forms in logarithms : a special case

Theorem (Baker, 1975)

Let a1, 0, ...,am be algebraic numbers from C, different from 0,1, and
let by, ..., by be rational integers such that

bilogag + -+ by logam # 0.
Then we have
|bylogay + - - + by log am| > (eB)~C,

where B = max{|b1|,...,|bm|} and C is an effectively computable
constant depending only upon m, and upon az, ..., Qn.
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Applications of linear forms in logarithms
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© Class number problems
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Applications of linear forms in logarithms

@ Class number problems

@ Effective Shafarevic

© Catalan’s Conjecture x” —y™ =1

© Primitive divisors in recurrence sequences
© Finiteness theorems for binary forms

O and lots and lots of results about Diophantine equations!
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Superelliptic equations

A classic result of Siegel, from 1929, is that the set of K-integral points on
a smooth algebraic curve of positive genus, defined over a number field K,
is finite. As an application of this to Diophantine equations, Leveque
showed that if f(x) € Z[x] is a polynomial of degree k > 2 with, say, no
repeated roots, and / > max{2,5 — k} is an integer, then the superelliptic
equation

f(x) =y

has at most finitely many solutions in integers x and y.
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Superelliptic equations

Already in a 1925 letter from Siegel to Mordell (partly published in 1926
under the pseudonym X, Siegel had proved precisely this result in case

I =2 (and had remarked that his argument readily extends to all
exponents | > 2). Via lower bounds for linear forms in logarithms, Schinzel
and Tijdeman deduced that, in fact, the equation

f(x)=y'

has at most finitely many solutions in integers x, y and variable

I > max{2,5 — k} (where we count the solutions with y' = 41,0 only
once). This latter result has the additional advantage over Leveque's
theorem in that it is effective (the finite set of values for x is effectively
computable).
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An example : x> — 2 = yP

Via lower bounds for linear forms in logarithms, we can prove that if we
have a solution to x2 — 2 = yP with |y| > 1, then 41 < p < 1237.
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An example : x> — 2 = yP

Via lower bounds for linear forms in logarithms, we can prove that if we
have a solution to x2 — 2 = yP with |y| > 1, then 41 < p < 1237.

We also have bounds upon x and y for the remaining values of p.
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An example : x> — 2 = yP

Via lower bounds for linear forms in logarithms, we can prove that if we
have a solution to x2 — 2 = yP with |y| > 1, then 41 < p < 1237.

We also have bounds upon x and y for the remaining values of p.

10000

Of the order of e€
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Bounding the Exponent x?> — 2 = yP?

x2—2=yP p > 5 prime.
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Bounding the Exponent x?> — 2 = yP?
x?—2=yP, p > 5 prime.

Frey curve: E Y2 = X3 4 2xX2% 42X, t=2.

xy) -
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Bounding the Exponent x?> — 2 = yP?

x?—2=yP, p > 5 prime.

Frey curve: E(xy -

Amin =28y, N=2"rad(y), N, =128.

By Ribet, E( ) ~p F where F is one of

F1 =128A1, F,=128B1, F3=128C1, F4=128D1.

Y? = X3 4+ 2xX2% +2X, t=2.
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Bounding the Exponent x?> — 2 = yP?

x?—2=yP, p > 5 prime.

Frey curve: E(xy -

Amin =28y, N=2"rad(y), N, =128.
By Ribet, E( ) ~p F where F is one of

Fi = 128A1, F»=128B1, F3=128C1, F,=128D1.
Exercise: Show that By(F;) =0 for all £ and i =1,2,3,4.

Y? = X3 4+ 2xX2% +2X, t=2.
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Bounding the Exponent x?> — 2 = yP?

x?—2=yP, p > 5 prime.

Frey curve: E Y2 = X3 4 2xX2% 42X, t=2.

xy) -

Amin =28y, N=2"rad(y), N, =128.

By Ribet, E( ) ~p F where F is one of

Fi = 128A1, F», =128B1, F3=128Cl, F4=128D1.

Exercise: Show that By(F;) =0 for all £ and i =1,2,3,4.
No bound on p from the modular method. Note £_; _;) = F; and
E(l,—l) — F3.
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Bounding the Exponent

By(f) # 0 = p is bounded.
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Bounding the Exponent

By(f) # 0 = p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then ¢, ¢ Q for infinitely many of the coefficients ¢,
and so By(f) # 0.
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Bounding the Exponent

By(f) # 0 = p is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then ¢, ¢ Q for infinitely many of the coefficients ¢,
and so By(f) # 0.
(b) Suppose
» f is rational,
> tis primeort =4,
» every elliptic curve F in the isogeny class corresponding to f we have

t 'T #F(Q)tors-
Then there are infinitely many primes ¢ such that By(f) # 0.
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Method of Kraus

X247 =ym m > 3.

31/58



Method of Kraus

X247 =ym, m > 3.

Easy exercise: Show there are no solutions with y odd.
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Method of Kraus

X247 =ym, m > 3.
Easy exercise: Show there are no solutions with y odd.
e Hint: just like x2 +1 = yP.

@ Don't bother doing the exercise!
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Method of Kraus

X247 =ym, m > 3.
Easy exercise: Show there are no solutions with y odd.
e Hint: just like x2 +1 = yP.
@ Don't bother doing the exercise!

Plenty of solutions with y even.

m X yil m x y m X y
3 +£1 213 £181 32 |4 +£3 £2
5 &£5 2|5 #£181 8 7 £11 2
15 4181 2
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The Method of Kraus

X247 =yP, p>11.
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The Method of Kraus

X247 =yP, p>11.

WLOG
x=1 (mod 4) and y is even.
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The Method of Kraus

X247 =yP, p>11.

WLOG
x=1 (mod 4) and y is even.
2
7
E,: Y2:X3+XX2+WX

Ly, ¢14
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The Method of Kraus

X247 =yP, p>11.

WLOG
x=1 (mod 4) and y is even.
2
7
E,. : Y2:X3+XX2+WX
Ly, ¢14

Ex ~p F where F = 14A. Note E_1; = 14A4.
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Fix p > 11. We choose ¢ satisfying certain conditions so that we obtain a
contradiction.

e Condition 1: /{14, () =-1
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Fix p > 11. We choose ¢ satisfying certain conditions so that we obtain a
contradiction.

e Condition 1: /{14, () =-1
So £1(x?>+ 7). Hence £ 1 NN'.
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Fix p > 11. We choose ¢ satisfying certain conditions so that we obtain a
contradiction.

e Condition 1: /{14, () =-1
So £1(x?>+ 7). Hence £ 1 NN'.

a(Ex) = ag(F) (mod p).
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Fix p > 11. We choose ¢ satisfying certain conditions so that we obtain a
contradiction.

e Condition 1: /{14, () =-1
So £1(x?>+ 7). Hence £ 1 NN'.

a(Ex) = ag(F) (mod p).

Let
T(¢,p) ={a €Fr:ay(En) = a(F) (mod p)}.
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Fix p > 11. We choose ¢ satisfying certain conditions so that we obtain a

contradiction.
e Condition 1: /{14, () =-1
So £1(x?>+ 7). Hence £ 1 NN'.

a(Ex) = ag(F) (mod p).
Let

T(¢,p) ={a €Fr:ay(En) = a(F) (mod p)}.

So x =« (mod ¢) for some o € T (¢, p).
Let

R(6,p) ={B € Fr: f°+7 € (F))"}.
Also x = 8 (mod ¢) for some 8 € R(¢, p).
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The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T (¢, p) N R(¢,p) = () then x> +7 = yP has
no solutions.
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The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T (¢, p) N R(¢,p) = () then x> +7 = yP has
no solutions.

T(t,p) ={a €Fr:aEs) =a(F) (mod p)}.

R(6.p) = {B € Fy: 247 € (B))P).
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The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T (¢, p) N R(¢,p) = () then x> +7 = yP has
no solutions.

T(t,p) ={a €Fr:aEs) =a(F) (mod p)}.

RU.p) = {8 € By 4% + 7€ (F1)P).
Note T(¢,p) # 0. eg. =11 € T(¢,p).
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The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T (¢, p) N R(¢,p) = () then x> +7 = yP has
no solutions.

T(t,p) ={a €Fr:aEs) =a(F) (mod p)}.

R(¢,p) ={BE€F,: B +7 € (F))"}.
Note T(¢,p) # 0. eg. =11 € T(¢,p).
If pt(¢—1) then

(F )P =F, = R({,p) =F, = T({,p) N R(¢, p) # 0.
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The Method of Kraus

Lemma

If ¢ satisfies Condition 1 and T (¢, p) N R(¢,p) = () then x> +7 = yP has
no solutions.

T(t,p) ={a €Fr:aEs) =a(F) (mod p)}.

R((,p) = {B €F,: B2+ 7€ (F))}.
Note T(¢,p) # 0. eg. =11 € T(¢,p).
If pt(¢—1) then

(F;)P =F; = R({,p) =Fy = T(£,p) N R(, p) # 0.
However, if p | (¢ — 1), then

-1
#(F,)P = ép = good chance that T (¢, p) = R(/, p).
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An example : x> +7 = y3

So we have p = 37. Let’s look for prime £ =1 mod 37.
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An example : x> +7 = y3

So we have p = 37. Let's look for prime £ =1 mod 37.
The smallest is £ = 149.

But (;5) = 1. No problem, let's try anyway.
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An example : x> +7 = y%'

So we have p = 37. Let's look for prime £ =1 mod 37.
The smallest is ¢ = 149.
But (;5) = 1. No problem, let's try anyway.
Suppose first that 149 | y. Then we have
—18 = aa9(F) = £(149+ 1) =+2 mod 37,

a contradiction. So we may suppose that 149 does not divide y.
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An example : x> +7 = y3

Our

T(149,37) = {Oé S F149 : al4g(Ea) = 3149(F) =-18 (mod 37)}
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An example : x> +7 = y3

Our

T(149,37) = {Oé S F149 : 8149(Ea) = 3149(F) =-18 (mod 37)}

We compute to see that

T(149,37) = {7,11,23,31,32,56,62,65,84,87,93,117,118, 126,138, 142}.
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An example : x> +7 = y%'

Our
T(149,37) = {« € F149 : a149(En) = a149(F) = —18 (mod 37)}.
We compute to see that
T(149,37) = {7,11, 23,31, 32,56, 62,65, 84,87,93,117, 118,126, 138, 142}.
But, y3" = +1, 444 mod 149, so that

R(149,37) = {B € F1a9 : B2+ 7 € (FJy)*'} = {21,22,127,128}.
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An example : x> +7 = y3

Our
T(149,37) = {« € F149 : a149(En) = a149(F) = —18 (mod 37)}.
We compute to see that
T(149,37) = {7,11,23,31,32,56,62,65,84,87,93,117,118, 126,138, 142}.
But, y3" = +1, 444 mod 149, so that
R(149,37) = {8 € Frag : % + 7 € (F}59)*"} = {21,22,127,128}.

Thus T(149,37) N R(149,37) = () and so x?> +7 = y3" has no solutions.
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Proposition

There are no solutions to x2 +7 = yPwith1l < p < 108.

Proof.

By computer. For each p find £ =1 (mod p) satisfying condition 1, so
that T (¢, p) N R(¢, p) = 0. O
Theorem

m

The only solutions to x> +7 = y™, with m > 3 are

m X yl m x y m X y
3 +£1 23 £181 324 +£3 £2
5 =5 2|5 #£181 8 7 £11 2
15 +181 2

Proof.

Linear forms in logs tell us p < 108. For small m reduce to Thue equations

and solve by computer algebra. O
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