Superelliptic equations via Frey curves

Mike Bennett

11 July 2016

Hilbert's 7th problem

What kind of number is $2^{\sqrt{2}}$?

Hilbert's 7th problem

What kind of number is $2^{\sqrt{2}}$?

More generally, if α and β are algebraic, what kind of number is α^{β} ?

Hilbert's 7th problem

What kind of number is $2^{\sqrt{2}}$?

More generally, if α and β are algebraic, what kind of number is α^{β} ?

Let's suppose that $\beta \notin \mathbb{Q}$ and $\alpha \neq 0, 1$.

The Gel'fond-Schneider Theorem

Theorem (Gel'fond-Schneider, 1934)

Let α and β be algebraic numbers in $\mathbb C$ with $\alpha \neq 0,1$ and $\beta \notin \mathbb Q$. Then α^β is transcendental.

The Gel'fond-Schneider Theorem

Theorem (Gel'fond-Schneider, 1934)

Let α and β be algebraic numbers in $\mathbb C$ with $\alpha \neq 0,1$ and $\beta \notin \mathbb Q$. Then α^β is transcendental.

Here, $\alpha^{\beta} = e^{\beta \log \alpha}$ for any determination of the logarithm.

The Gel'fond-Schneider Theorem

Theorem (Gel'fond-Schneider, 1934)

Let α and β be algebraic numbers in $\mathbb C$ with $\alpha \neq 0,1$ and $\beta \notin \mathbb Q$. Then α^{β} is transcendental.

Here, $\alpha^{\beta} = e^{\beta \log \alpha}$ for any determination of the logarithm.

Corollary

Let α, β be algebraic numbers in $\mathbb C$ different from 0,1 such that $\log \alpha$ and $\log \beta$ are linearly independent over $\mathbb Q$. Then for all non-zero algebraic numbers γ, δ , we have

$$\gamma \log \alpha + \delta \log \beta \neq 0.$$

Baker's Theorem

Theorem (Baker, 1966)

Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be algebraic numbers from \mathbb{C} , different from 0, 1, such that $\log \alpha_1, \log \alpha_2, \ldots, \log \alpha_m$ are linearly independent over \mathbb{Q} . Then for every tuple $(\beta_0, \beta_1, \ldots, \beta_m)$, different from $(0, 0, \ldots, 0)$, we have that

$$\beta_0 + \beta_1 \log \alpha_1 + \dots + \beta_m \log \alpha_m \neq 0.$$

Linear forms in logarithms: a special case

Theorem (Baker, 1975)

Let $\alpha_1, \alpha_2, \ldots, \alpha_m$ be algebraic numbers from \mathbb{C} , different from 0,1, and let b_1, \ldots, b_m be rational integers such that

$$b_1 \log \alpha_1 + \cdots + b_m \log \alpha_m \neq 0.$$

Then we have

$$|b_1 \log \alpha_1 + \cdots + b_m \log \alpha_m| \geq (eB)^{-C},$$

where $B = \max\{|b_1|, \dots, |b_m|\}$ and C is an effectively computable constant depending only upon m, and upon $\alpha_1, \dots, \alpha_m$.

Class number problems

- Class number problems
- 2 Effective Shafarevic

- Class number problems
- 2 Effective Shafarevic
- **3** Catalan's Conjecture $x^n y^m = 1$

- Class number problems
- Effective Shafarevic
- 3 Catalan's Conjecture $x^n y^m = 1$
- Openitive divisors in recurrence sequences

- Class number problems
- 2 Effective Shafarevic
- **3** Catalan's Conjecture $x^n y^m = 1$
- Primitive divisors in recurrence sequences
- Finiteness theorems for binary forms

- Class number problems
- 2 Effective Shafarevic
- **3** Catalan's Conjecture $x^n y^m = 1$
- Primitive divisors in recurrence sequences
- 5 Finiteness theorems for binary forms
- o and lots and lots of results about Diophantine equations!

Superelliptic equations

A classic result of Siegel, from 1929, is that the set of K-integral points on a smooth algebraic curve of positive genus, defined over a number field K, is finite. As an application of this to Diophantine equations, Leveque showed that if $f(x) \in \mathbb{Z}[x]$ is a polynomial of degree $k \geq 2$ with, say, no repeated roots, and $l \geq \max\{2, 5-k\}$ is an integer, then the *superelliptic* equation

$$f(x) = y^{I}$$

has at most finitely many solutions in integers x and y.

Superelliptic equations

Already in a 1925 letter from Siegel to Mordell (partly published in 1926 under the pseudonym X, Siegel had proved precisely this result in case l=2 (and had remarked that his argument readily extends to all exponents $l\geq 2$). Via lower bounds for linear forms in logarithms, Schinzel and Tijdeman deduced that, in fact, the equation

$$f(x) = y^I$$

has at most finitely many solutions in integers x,y and variable $l \geq \max\{2,5-k\}$ (where we count the solutions with $y^l = \pm 1,0$ only once). This latter result has the additional advantage over Leveque's theorem in that it is effective (the finite set of values for x is effectively computable).

An example : $x^2 - 2 = y^p$

Via lower bounds for linear forms in logarithms, we can prove that if we have a solution to $x^2 - 2 = y^p$ with |y| > 1, then $41 \le p < 1237$.

An example : $x^2 - 2 = y^p$

Via lower bounds for linear forms in logarithms, we can prove that if we have a solution to $x^2-2=y^p$ with |y|>1, then $41\leq p<1237$.

We also have bounds upon x and y for the remaining values of p.

An example : $x^2 - 2 = y^p$

Via lower bounds for linear forms in logarithms, we can prove that if we have a solution to $x^2-2=y^p$ with |y|>1, then $41\leq p<1237$.

We also have bounds upon x and y for the remaining values of p.

Of the order of $e^{e^{10000}}$.

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
: $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
: $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p, \qquad N = 2^7 \operatorname{rad}(y), \qquad N_p = 128.$$

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
: $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p$$
, $N = 2^7 \operatorname{rad}(y)$, $N_p = 128$.

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

$$F_1 = 128A1, \quad F_2 = 128B1, \quad F_3 = 128C1, \quad F_4 = 128D1.$$

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
: $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p$$
, $N = 2^7 \operatorname{rad}(y)$, $N_p = 128$.

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

$$F_1 = 128A1$$
, $F_2 = 128B1$, $F_3 = 128C1$, $F_4 = 128D1$.

Exercise: Show that $B_{\ell}(F_i) = 0$ for all ℓ and i = 1, 2, 3, 4.

$$x^2 - 2 = y^p$$
, $p \ge 5$ prime.

Frey curve:
$$E_{(x,y)}$$
: $Y^2 = X^3 + 2xX^2 + 2X$, $t = 2$.

$$\Delta_{\min} = 2^8 y^p$$
, $N = 2^7 \operatorname{rad}(y)$, $N_p = 128$.

By Ribet, $E_{(x,y)} \sim_p F$ where F is one of

$$F_1 = 128A1$$
, $F_2 = 128B1$, $F_3 = 128C1$, $F_4 = 128D1$.

Exercise: Show that $B_{\ell}(F_i) = 0$ for all ℓ and i = 1, 2, 3, 4. **No bound on** p from the modular method. Note $E_{(-1,-1)} = F_1$ and $E_{(1,-1)} = F_3$.

Bounding the Exponent

$$B_{\ell}(f) \neq 0 \Longrightarrow p$$
 is bounded.

Bounding the Exponent

$$B_{\ell}(f) \neq 0 \Longrightarrow p$$
 is bounded.

We are guaranteed to succeed in two cases:

(a) If f is irrational, then $c_{\ell} \notin \mathbb{Q}$ for infinitely many of the coefficients ℓ , and so $B_{\ell}(f) \neq 0$.

Bounding the Exponent

$$B_{\ell}(f) \neq 0 \Longrightarrow p$$
 is bounded.

We are guaranteed to succeed in two cases:

- (a) If f is irrational, then $c_{\ell} \notin \mathbb{Q}$ for infinitely many of the coefficients ℓ , and so $B_{\ell}(f) \neq 0$.
- (b) Suppose
 - f is rational,
 - t is prime or t = 4,
 - every elliptic curve F in the isogeny class corresponding to f we have $t \nmid \#F(\mathbb{Q})_{\text{tors}}$.

Then there are infinitely many primes ℓ such that $B_{\ell}(f) \neq 0$.

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

Easy exercise: Show there are no solutions with y odd.

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

Easy exercise: Show there are no solutions with *y* odd.

• Hint: just like $x^2 + 1 = y^p$.

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

Easy exercise: Show there are no solutions with *y* odd.

- Hint: just like $x^2 + 1 = y^p$.
- Don't bother doing the exercise!

$$x^2 + 7 = y^m, \qquad m \ge 3.$$

Easy exercise: Show there are no solutions with y odd.

- Hint: just like $x^2 + 1 = y^p$.
- Don't bother doing the exercise!

Plenty of solutions with y even.

m	X	- 1	m		у			у
3	± 1			± 181		4	±3	±2
5	± 5	2	5	± 181	8	7	± 11	2
15	± 181	2						

The Method of Kraus

$$x^2 + 7 = y^p, \qquad p \ge 11.$$

$$x^2 + 7 = y^p$$
, $p \ge 11$.

WLOG

 $x \equiv 1 \pmod{4}$ and y is even.

$$x^2 + 7 = y^p$$
, $p \ge 11$.

WLOG

$$x \equiv 1 \pmod{4}$$
 and y is even.

$$E_{x}: Y^{2} = X^{3} + xX^{2} + \frac{(x^{2} + 7)}{4}X$$

$$\Delta = \frac{-7y^{p}}{2^{12}}, \qquad N = 14 \prod_{\ell \mid y, \ \ell \nmid 14} \ell.$$

$$x^2 + 7 = y^p$$
, $p \ge 11$.

WLOG

$$x \equiv 1 \pmod{4}$$
 and y is even.

$$E_{x}: Y^{2} = X^{3} + xX^{2} + \frac{(x^{2} + 7)}{4}X$$

$$\Delta = \frac{-7y^{p}}{2^{12}}, \qquad N = 14 \prod_{\ell \mid y, \ \ell \nmid 14} \ell.$$

 $E_{x} \sim_{p} F$ where F = 14A. Note $E_{-11} = 14A4$.

• Condition 1: $\ell \nmid 14$, $\left(\frac{-7}{\ell}\right) = -1$.

• Condition 1: $\ell \nmid 14$, $\left(\frac{-7}{\ell}\right) = -1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

• Condition 1:
$$\ell \nmid 14$$
, $\left(\frac{-7}{\ell}\right) = -1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

$$a_{\ell}(E_x) \equiv a_{\ell}(F) \pmod{p}.$$

• Condition 1: $\ell \nmid 14$, $\left(\frac{-7}{\ell}\right) = -1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

$$a_{\ell}(E_x) \equiv a_{\ell}(F) \pmod{p}.$$

Let

$$T(\ell,p) = \{\alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p}\}.$$

• Condition 1: $\ell \nmid 14$, $\left(\frac{-7}{\ell}\right) = -1$.

So $\ell \nmid (x^2 + 7)$. Hence $\ell \nmid NN'$.

$$a_{\ell}(E_x) \equiv a_{\ell}(F) \pmod{p}.$$

Let

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

So $x \equiv \alpha \pmod{\ell}$ for some $\alpha \in T(\ell, p)$.

Let

$$R(\ell, p) = \{ \beta \in \mathbb{F}_{\ell} : \beta^2 + 7 \in (\mathbb{F}_{\ell}^{\times})^p \}.$$

Also $x \equiv \beta \pmod{\ell}$ for some $\beta \in R(\ell, p)$.

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

$$R(\ell, p) = \{ \beta \in \mathbb{F}_{\ell} : \beta^{2} + 7 \in (\mathbb{F}_{\ell}^{\times})^{p} \}.$$

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell,p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

$$R(\ell, p) = \{ \beta \in \mathbb{F}_{\ell} : \beta^2 + 7 \in (\mathbb{F}_{\ell}^{\times})^p \}.$$

Note $T(\ell, p) \neq \emptyset$. e.g. $\overline{-11} \in T(\ell, p)$.

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell,p)=\{lpha\in\mathbb{F}_\ell:a_\ell(E_lpha)\equiv a_\ell(F)\pmod{p}\}.$$
 $R(\ell,p)=\{eta\in\mathbb{F}_\ell:eta^2+7\in(\mathbb{F}_\ell^ imes)^p\}.$ Note $T(\ell,p)
eq\emptyset.$ e.g. $\overline{-11}\in T(\ell,p).$ If $p
mid \{\ell-1\}$ then $(\mathbb{F}_\ell^ imes)^p=\mathbb{F}_\ell^ imes R(\ell,p)=\mathbb{F}_\ell\Longrightarrow T(\ell,p)\cap R(\ell,p)
eq\emptyset.$

Lemma

If ℓ satisfies Condition 1 and $T(\ell, p) \cap R(\ell, p) = \emptyset$ then $x^2 + 7 = y^p$ has no solutions.

$$T(\ell, p) = \{ \alpha \in \mathbb{F}_{\ell} : a_{\ell}(E_{\alpha}) \equiv a_{\ell}(F) \pmod{p} \}.$$

$$R(\ell, p) = \{ \beta \in \mathbb{F}_{\ell} : \beta^2 + 7 \in (\mathbb{F}_{\ell}^{\times})^p \}.$$

Note $T(\ell, p) \neq \emptyset$. e.g. $-11 \in T(\ell, p)$.

If
$$p \nmid (\ell - 1)$$
 then

$$(\mathbb{F}_{\ell}^{\times})^p = \mathbb{F}_{\ell}^{\times} \Longrightarrow R(\ell, p) = \mathbb{F}_{\ell} \Longrightarrow T(\ell, p) \cap R(\ell, p) \neq \emptyset.$$

However, if $p \mid (\ell - 1)$, then

$$\#(\mathbb{F}_{\ell}^{\times})^p = \frac{\ell-1}{p} \Longrightarrow \text{good chance that } T(\ell,p) = R(\ell,p).$$

So we have p=37. Let's look for prime $\ell \equiv 1 \mod 37$.

So we have p=37. Let's look for prime $\ell \equiv 1 \mod 37$.

The smallest is $\ell = 149$.

So we have p = 37. Let's look for prime $\ell \equiv 1 \mod 37$.

The smallest is $\ell = 149$.

But $\left(\frac{-7}{149}\right) = 1$. No problem, let's try anyway.

So we have p = 37. Let's look for prime $\ell \equiv 1 \mod 37$.

The smallest is $\ell = 149$.

But $\left(\frac{-7}{149}\right) = 1$. No problem, let's try anyway.

Suppose first that $149 \mid y$. Then we have

$$-18 = a_{149}(F) \equiv \pm (149 + 1) \equiv \pm 2 \mod 37,$$

a contradiction. So we may suppose that 149 does not divide y.

Our

$$T(149,37) = \{ \alpha \in \mathbb{F}_{149} : a_{149}(E_{\alpha}) \equiv a_{149}(F) = -18 \pmod{37} \}.$$

Our

$$T(149,37) = \{ \alpha \in \mathbb{F}_{149} : a_{149}(E_{\alpha}) \equiv a_{149}(F) = -18 \pmod{37} \}.$$

We compute to see that

$$T(149,37) = \{7,11,23,31,32,56,62,65,84,87,93,117,118,126,138,142\}.$$

Our

$$T(149,37) = \{ \alpha \in \mathbb{F}_{149} : a_{149}(E_{\alpha}) \equiv a_{149}(F) = -18 \pmod{37} \}.$$

We compute to see that

$$T(149,37) = \{7,11,23,31,32,56,62,65,84,87,93,117,118,126,138,142\}.$$

But, $y^{37} \equiv \pm 1, \pm 44 \mod 149$, so that

$$R(149,37) = \{ \beta \in \mathbb{F}_{149} : \beta^2 + 7 \in (\mathbb{F}_{149}^{\times})^{37} \} = \{21,22,127,128\}.$$

Our

$$T(149,37) = \{ \alpha \in \mathbb{F}_{149} : a_{149}(E_{\alpha}) \equiv a_{149}(F) = -18 \pmod{37} \}.$$

We compute to see that

$$T(149, 37) = \{7, 11, 23, 31, 32, 56, 62, 65, 84, 87, 93, 117, 118, 126, 138, 142\}.$$

But, $y^{37} \equiv \pm 1, \pm 44 \mod 149$, so that

$$R(149,37) = \{ \beta \in \mathbb{F}_{149} : \beta^2 + 7 \in (\mathbb{F}_{149}^{\times})^{37} \} = \{21,22,127,128\}.$$

Thus $T(149, 37) \cap R(149, 37) = \emptyset$ and so $x^2 + 7 = y^{37}$ has no solutions.

Proposition

There are no solutions to $x^2 + 7 = y^p$ with $11 \le p \le 10^8$.

Proof.

By computer. For each p find $\ell \equiv 1 \pmod{p}$ satisfying condition 1, so that $T(\ell,p) \cap R(\ell,p) = \emptyset$.

Theorem

The only solutions to $x^2 + 7 = y^m$, with $m \ge 3$ are

m	X	у	m	X	У	m	X	У
3	± 1	2	3	± 181	32	4	±3	±2
5			5	± 181	8	7	± 11	2
15	± 181	2						

Proof.

Linear forms in logs tell us $p \le 10^8$. For small m reduce to Thue equations and solve by computer algebra.