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1. L Warning

These notes are intended to give the reader with only modest knowledge of algebraic
geometry a feel for some methods for computing the set of rational points on a curve
of genus ≥ 2, especially Chabauty and the Mordell–Weil sieve. As we are trying to
do this assuming as little background as possible, some of the mathematics will be
only approximately correct. We will often avoid giving precise definitions and omit
all proofs. Instead we offer examples that should guide the reader’s intuition.

Acknowledgment. I would like to thank the workshop organizers for their wonderful
hospitality, which made our stay in Ohrid particularly enjoyable and productive.

2. A review of some basic algebraic geometry I

I heartily recommend the first three chapters of Silverman’s book [21] as an introduc-
tion to basic algebraic geometry with a view to arithmetic. In what follows we intro-
duce some basic notions that the reader will find in a more organized and thorough
fashion in Silverman’s book.

We think of varieties as defined by systems of polynomial equations in affine or
projective space. An affine variety V ⊂An defined over a field k is given by a system
of polynomial equations

V :


f1(x1, . . . , xn) = 0,

...
fm(x1, . . . , xn) = 0,

fi ∈ k[x1, . . . , xn].

1The author is supported by an EPSRC Leadership Fellowship EP/G007268/1, and EPSRC LMF: L-
Functions and Modular Forms Programme Grant EP/K034383/1.



For L ⊇ k, the set of L-points of V is

V (L) = {(a1, . . . , an) ∈ Ln : fi (a1, . . . , an) = 0 for i = 1, . . . ,m}.

A projective variety V ⊆ Pn defined over k is given by a system of polynomial
equations

V :


f1(x0, . . . , xn) = 0,

...
fm(x0, . . . , xn) = 0,

fi ∈ k[x0, . . . , xn] are homogeneous.

For L ⊇ k, the set of L-points of V is

V (L) = {(a0, . . . , an) ∈ Ln+1\{0} : fi (a0, . . . , an) = 0 for i = 1, . . . ,m}/ ∼,

where (a0, . . . , an) ∼ (b0, . . . , an) if there is someλ ∈ L∗ such thatλai = bi for i = 0, . . . ,n.
A variety V ⊂Pn is covered by n +1 affine patches:

V ∩ {xi = 1} i = 0,1, . . . ,n.

3. Local Methods

We’re interested in understanding V (Q) for varieties defined overQ. More generally, if
k is a number field, we’re interested in V (k) for varieties defined over k.

Local methods make use of the fact that Q ⊂ R and Q ⊂ Qp for all primes p. It is
convenient to write R=Q∞. Then V (Q) ⊆V (Qp ) for all p (including ∞). So,

V (Qp ) =; =⇒ V (Q) =;.

Example 3.1

V : x2 + y2 + z2 = 0, V ⊂P2. (1)

Note V (R) =;, so V (Q) =;. But also, V (Q2) =;.

Let V be a variety defined over Q. We say that V has points everywhere locally if
V (Qp ) 6= ; for all p (including ∞). We make the following trivial observation:

V (Q) 6= ; =⇒ V has points everywhere locally.

It is interesting to ask if the converse of this statement is true. The following theorem
says that this is true for quadrics. A quadric in Pn is a variety that is defined by a single
homogeneous quadratic equation. For example, (1) is a quadratic in P2.

Theorem 1 (Hasse–Minkowski) Let V ⊂ Pn be a quadric (n ≥ 3), defined over Q. Then
the following are equivalent:



• V has points everywhere locally;
• V (Q) 6= ; (V has global points).

We say, quadrics satisfy the Hasse principle.

Fact 3.2 For varieties V defined over Q (or a number field), there is an algorithm to
decide if V has points everywhere locally.

For more on local methods, see Stoll’s lectures.

4. A review of some basic algebraic geometry II

4.1. Dimension

We classify varieties by dimension, a non-negative integer: 0,1,2, . . ..

Fact 4.1 A variety V ⊂ An or Pn , defined by a single polynomial equation V : f = 0,
where f is a non-constant polynomial, has dimension n −1.

Example 4.2

V1 ⊂A1, V1 : x3 +x +1 = 0 has dimension 0.

V2 ⊂A2, V2 : y2 = x6 +1, has dimension 1.

V3 ⊂P2, V3 : x3 + y3 + z3 = 0, has dimension 1.

V4 ⊂P3, V4 : x3 + y3 + z3 +w3 = 0, has dimension 2.

Varieties of dimension 1,2,3, . . . are called curves, surfaces, threefolds, etc.

4.2. Smoothness

Let V be an affine variety V ⊂An of dimension d , defined over a field k, and given by
a system of polynomial equations

V :


f1(x1, . . . , xn) = 0,

...
fm(x1, . . . , xn) = 0,

fi ∈ k[x1, . . . , xn].

We say that P ∈V (k) is smooth if

rank

(
∂ fi

∂x j
(P )

)
i=1,...,m, j=1,...,n

= n −d ,



otherwise we say that P is singular. We say that V is smooth or non-singular if it is
smooth at all points P ∈V (k).

If V ⊂Pn , we say that V is smooth if all the affine patches V ∩{xi = 1} are smooth.

Example 4.3 Let C ⊂A2 be given by

C : y2 = f (x)

where f is a non-constant polynomial. Then P = (a,b) ∈C is singular iff the 1×2 matrix
(2a − f ′(b)) is zero. So

2a = 0, a2 = f (b), f ′(b) = 0.

If char(k) 6= 2, then f (b) = f ′(b) = 0. Such b ∈ k exists if and only if f is not squarefree, or
equivalently if disc( f ) = 0 where disc( f ) is the discriminant of f . Thus C has a singular
point if and only if disc( f ) = 0, and C is smooth iff disc( f ) 6= 0.

A smooth curve of the form y2 = f (x) with deg( f ) ≥ 5 is called a hyperelliptic
curve.

Example 4.4 Let V ⊂Pn (defined over k) be given by

V : f (x0, . . . , xn) = 0,

where f 6= 0 is homogeneous. Then V is singular if and only if there is P ∈ V (k) such
that

∂ f

∂x1
(P ) = ·· · = ∂ f

∂xn
(P ) = 0.

4.3. Curves

We will restrict our attention to curves.

Definition 4.5 By a curve C over a field k, we mean a smooth, projective, absolutely
irreducible (or geometrically irreducible), 1-dimensional k-variety.

Given a curve C /Q, our goal is to understand C (Q).

Example 4.6 The following example illustrates the notion of reducibility. Consider the
variety V ⊂A2 overQ given by the equation

V : x6 −1 = y2 +2y.

Can rewrite as

V : (y +1−x3)(y +1+x3) = 0.

So



V =V1 ∪V2

where

V1 : y +1−x3 = 0, V2 : y +1+x3 = 0.

Note V is reducible (we can write it as the union of two proper subvarieties), but V1 and
V2 are irreducible. To understand V (Q) enough to understand V1(Q) and V2(Q).

Example 4.7 The following example illustrates the notion of absolute reducibility.
Consider the variety V ⊂A2 overQ given by the equation

V : 2x6 −1 = y2 +2y.

V is irreducible, but absolutely reducible (can be written as a union of proper subvari-
eties defined over a field extension) since

V
Q
= {y +1+p

2x3 = 0}∪ {y +1−p
2x3 = 0}.

If (x, y) ∈V (Q) then

y +1+p
2x3 = y +1−p

2x3 = 0.

In other words

y =−1, x = 0.

So V (Q) = {(0,−1)}.

Moral: To understand rational points on varieties, it is enough to understand rational
on absolutely irreducible varieties.

4.4. Function Fields

Let V ⊂An be an absolutely irreducible affine variety defined over k by the equations

V :


f1(x1, . . . , xn) = 0,

...
fm(x1, . . . , xn) = 0,

fi ∈ k[x1, . . . , xn].

The affine coordinate ring of V is given by

k[V ] = k[x1, . . . , xn]/( f1, . . . , fm).

The function field k(V ) of V is the field of fractions of k[V ]. If V ⊂ Pn then its func-
tion field is the function field of any affine patch (the function fields of any two affine
patches will be isomorphic).



Example 4.8

k[An] = k[x1, . . . , xn], k(An) = k(x1, . . . , xn),

k(Pn) = k(Pn ∩ {x0 = 1}) = k(x1, . . . , xn).

Example 4.9 It is easy to calculate the function field of a hyperelliptic curve.

C : y2 = f (x) f ∈ k[x]\k, disc( f ) 6= 0.

Namely

k[C ] = k[x, y]/(y2 − f (x)), k(C ) = k(x)
(√

f (x)
)

.

Example 4.10 This very basic example illustrates the problems we can have with re-
ducible varieties. Let

V ⊂A2, V : x1x2 = 0,

defined over a field k. The affine coordinate ring of V is k[V ] = k[x1, x2]/(x1x2). Note
that x1, x2 are zero divisors in k[V ] so it isn’t an integral domain. It does not have a field
of fractions and so there is no function field. In the definition of function field above we
restricted ourself to absolutely irreducible varieties, so we will not run into this problem,
even if we extend our base field k.

4.5. Genus

We classify curves by genus. This is a geometric invariant that is a non-negative inte-
ger: 0,1,2, . . . .

Example 4.11 If

C /k : F (x, y, z) = 0, C ⊂P2

is smooth, where F ∈ k[x, y, z] is homogeneous of degree n, then C has genus (n−1)(n−
2)/2.

Example 4.12 Let

C /k : y2 = f (x), C ⊂A2 ( f ∈ k[x] non-constant).

If C is smooth (by Example 4.3 this is equivalent to disc( f ) 6= 0) and deg( f ) = d then

genus(C ) =
{

(d −1)/2 d odd

(d −2)/2 d even.

Recall we defined a hyperelliptic curve to be of the form y2 = f (x) where disc( f ) 6= 0 and
d ≥ 5. Thus the genus of a hyperelliptic curve is ≥ 2.



5. Curves of Genus 0

The following theorem is a standard consequence of the Riemann–Roch Theorem.

Theorem 2 Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k) to a
smooth plane curve of degree 2 (i.e. a conic). Moreover, if C (k) 6= ; then C is isomorphic
over k to P1.

A conic is just a quadric in P2. Thus the Hasse–Minkowski Theorem (Theorem 1)
is applicable to curves of genus 0, and give us the following.

Theorem 3 (The Hasse Principle) Let C /Q be a curve of genus 0. The following are
equivalent:

(a) C (Q) 6= ;;
(b) C (R) 6= ; and C (Qp ) 6= ; for all primes p.

Note that condition (b) says that C has points everywhere locally. It appears that to
check (b) we need to check infinitely many conditions. However we stated previously
that there is an algorithm for checking if a variety has points everywhere locally. This
is illustrated by the following strengthening of Theorem 3.

Theorem 4 (Legendre, Hasse) Let

C : ax2 +by2 + cz2 = 0, a, b, c non-zero, squarefree integers. (2)

This is a smooth curve of genus 0. The following are equivalent:

(a) C (Q) 6= ;;
(b) C (R) 6= ; and C (Qp ) 6= ; for all primes p.
(c) C (R) 6= ; and C (Qp ) 6= ; for all primes p | 2abc.

Any conic in P2 defined over Q can be written in the form (2) by completing squares,
and appropriately scaling the equation and unknowns. Note that to test that C has
points everywhere locally (condition (b)), we need only check the existence of local
points for a certain finite set of primes (condition (c)).

6. Curves of Genus 1

This section is included for completeness. For more details on curves of genus 1 see
the lectures by Jan-Steffen Müller and by Michael Stoll in the same volume.

Theorem 5 If C is a curve of genus 1 over a field k and P0 ∈C (k), then C is isomorphic
over k to a Weierstrass elliptic curve

y2z +a1x y z +a3 y z2 = x3 +a2x2z +a4xz2 +a6z3 ⊂P2,

where the isomorphism sends P0 to (0 : 1 : 0).



Theorem 6 (The Mordell–Weil Theorem) If k = Q or a number field, then C (k) is a
finitely generated abelian group with P0 as the zero element.

Currently, for curves C /Q of genus 1,

(i) there is no known algorithm for deciding if C (Q) 6= ;;
(ii) there is no known algorithm for computing a Mordell–Weil basis for C (Q) if it

is non-empty.

But there is a descent strategy that often succeeds with (i) and (ii).

6.1. Failure of the Hasse Principle in Genus 1

Example 6.1 The following example is due to Selmer. Let C ⊂P2 be given by

C : 3x3 +4y3 +5z3 = 0.

This is a curve of genus 1 defined overQ. Then

1. C (R) 6= ; and C (Qp ) 6= ; (C has points everywhere locally);
2. C (Q) =; (C has no global points).

In other words, C is a counterexample to the Hasse principle.

Exercise 6.2 Show that X 4 −17 = 2Y 2 (also a curve of genus 1) is a counterexample to
the Hasse principle.

7. Genus ≥ 2

The most important theorem in the subject is the following.

Theorem 7 (Faltings, 1983) Let C be a curve of genus ≥ 2 overQ. Then C (Q) is finite.

Whilst the statement of Faltings’ Theorem is simple and elegant, the only known
proofs are deep (probably the easiest to read is the one found in the book of Hindry
and Silverman [14]). The known proofs are ineffective: they do not give an algorithm
for computing the rational points. Currently, for curves C /Q of genus ≥ 2,

1. There is no known algorithm for computing C (Q).
2. There is no known algorithm for deciding if C (Q) 6= ;.

But there is a bag of tricks that can be used to show that C (Q) is empty, or determine
C (Q) if it is non-empty. These include:

(i) Local Methods.
(ii) Quotients.

(iii) Descent.
(iv) Chabauty.
(v) Mordell–Weil sieve.



The purpose of these lectures is to get a feel for each of these methods and see it ap-
plied to a particular example. We’ve already talked about local methods in Section 3.
Quotients and descent are dealt with in detail in Stoll’s lectures. but for complete-
ness we will go through them quickly, before covering Chabauty and the Mordell–Weil
sieve.

8. Quotients

Let C be a curve over a field k. A quotient is curve D/k with a non-constant morphism

φ : C → D

also defined over k.

Lemma 8.1 (Trivial Observation) φ(C (k)) ⊆ D(k). If we know D(k) and it is finite, we
can compute C (k).

Example 8.2 Let

C : Y 2 = AX 6 +B X 4 +C X 2 +D, A,B ,C ,D ∈Z,

and suppose disc(AX 6 +B X 4 +C X 2 +D) 6= 0, so C has genus 2. Let

E1 : y2 = Ax3 +B x2 +C x +D, E2 : y2 = Dx3 +C x2 +B x + A.

Then E1, E2 are elliptic curves overQ. We have non-constant morphisms

φ1 : C → E1, (X ,Y ) 7→ (X 2,Y ),

and

φ2 : C → E2, (X ,Y ) 7→
(

1

X 2 ,
Y

X 3

)
.

If the ranks of either Ei is 0 we can determine Ei (Q) (which is finite) and so can deter-
mine C (Q).

As a special case, consider the genus 2 curve C /Q given by

C : Y 2 = 13X 6 −1.

It is easy to show that C has points everywhere locally. Take E : y2 = x3 + 13 and φ :
C → E to be given by (X ,Y ) 7→ (−1/X 2,Y /X 3). Now E(Q) = {∞}. So C (Q) ⊆ φ−1(∞) =
{(0, i ), (0,−i )}. Thus C (Q) =;.



Example 8.3 The following example will help prepare the reader for introduction of the
Mordell–Weil sieve. Let

C /Q : Y 2 = 11X 6 −19.

Again, C has points everywhere locally. In the notation of Example 8.2, E1(Q) ∼= Z and
E2(Q) ∼=Z.

Let p be a prime of good reduction for C . Note the commutative diagram:

C (Q)
φ

//

red

��

E1(Q)×E2(Q)

red

��

Z×Z
η

oo

µuu

C (Fp )
φ

// E1(Fp )×E2(Fp )

Here φ= (φ1,φ2) where the φi are as in Example 8.2; red denotes reduction modulo p;
η is given by η(m,n) = (mP1,nP2) where P1, P2 are generators for E1(Q), E2(Q) respec-
tively; and finally µ= red◦η. Observe that

(red◦φ)(C (Q)) ⊂φ(C (Fp ))∩µ(Z×Z).

Exercise: Use this with p = 7 to show that C (Q) =;.

9. Descent

Let’s dive straight into an example of descent.

Example 9.1 We will study the rational points on the genus 2 curve.

C : Y 2 = (X 2 +X +1)(X 4 +7), (3)

which has no obvious quotients. Write

X = x

z
, Y = y

z3 , x, y, z ∈Z, gcd(x, z) = 1.

So

y2 = (x2 +xz + z2)(x4 +7z4). (4)

Note we have 2 extra points on this model (x : y : z) = (1 : ±1 : 0) which we think of as
points are infinity on (3). We think of (4) as an equation for C in P(1,3,1). Does C have
any other rational points?

We will return to Example 9.1 soon. We need the following elementary lemma.



Lemma 9.2 If x, y are coprime non-zero integers and x y = zn where z is also an integer,
n ≥ 1, then there exists x1, y1 ∈Z such that x =±xn

1 and y =±yn
1 .

The proof is an easy exercise using unique factorization; the same is true of the fol-
lowing generalization.

Lemma 9.3 Let S be a set of primes. Let x, y are non-zero integers such that x y = zn

where z is also an integer and n ≥ 1. If x, y are coprime outside S then there exists x1,
y1 ∈Z such that x = axn

1 and y = byn
1 , where all the prime factors of a, b belong to S.

9.1. Resultants

A good reference on resultants is [9, Chapter 16].

Lemma 9.4 Let f , g ∈Z[x], coprime. Then there exists R = R( f , g ) ∈Z, R 6= 0 (R is called
the resultant), and polynomials a, b ∈Z[x] such that

a(x) f (x)+b(x)g (x) = R.

In particular, if α ∈Z, then gcd( f (α), g (α)) | R.

It is easy to compute the resultant R; it is just a determinant involving the coefficients
of f and g (see [9]).

Lemma 9.5 Let F (x, y), G(x, y) be coprime homogeneous polynomials ∈Z[x, y]. Let f =
F (x,1) and g =G(x,1), and define R = R(F,G) = R( f , g ) (the resultant of F and G). If α,
β ∈Z are coprime, then

gcd(F (α,β),G(α,β)) | R.

Proof: We know that a(x) f (x)+b(x)g (x) = R. Substitute x =α/β and homogenize, to
obtain

A(α,β)F (α,β)+B(α,β)G(α,β) = Rβm

for some m. It turns out that also,

A′(α,β)F (α,β)+B ′(α,β)G(α,β) = Rαn .

So

gcd(F (α,β),G(α,β)) | gcd(Rβm ,Rαn) = R.

�

Example 9.6 We return to Example 9.1. The resultant of the two factors on the right
hand-side of (4) is 43, so

gcd(x2 +xz + z2, x4 +7z4) = 1 or 43.



In particular, the two factors are coprime outside S = {43}. Hence

x2 +xz + z2 = ay2
1 , x4 +7z4 = ay2

2 where a =±1 or a =±43.

So we obtain four curves

Da :

{
X 2 +X +1 = aY 2

1 ,
X 4 +7 = aY 2

2

with a = ±1, ±43. Let φa : Da → C be given by φa(X ,Y1,Y2) = (X , aY1Y2). From the
above argument,

C (Q) = ⋃
a∈{±1,±43}

φa (Da(Q)) .

Vague Definition: Given a curve C over a number field k, a descent is some process
which yields a finite family φa : Da →C of covers such that

C (k) =⋃
a
φa (Da(k)) . (5)

Example 9.7 We continue Example 9.1. Observe that

• D−1(R) =;, so D−1(Q) =;.
• D−43(R) =;, so D−43(Q) =;.
• D43(Q2) =;, so D43(Q) =;.

Thus after descent and local solvability checking, we have

C (Q) =φ(D(Q))

where

D = D1 :

{
X 2 +X +1 = Y 2

1 ,
X 4 +7 = Y 2

2 ,
φ(X ,Y1,Y2) = (X ,Y1Y2).

In fact D1 has four rational points are infinity. So D1(Q) 6= ;.

We have reduced finding all rational points on C (which has genus 2) to finding all
rational points on D (which has genus 3). The curve D has a genus 1 quotient: X 4 +7 =
Y 2

2 . In fact, we have ψ : D → E, where

E : y2 = x(x2 +7), (X ,Y1,Y2) 7→ (X 2, X Y2).

But E(Q) = {(0,0),∞} so

D(Q) = {(1 : ±1 : ±1 : 0)}.

Hence



C (Q) = {(1 : ±1 : 0)}.

Note the following diagram

D

φ
xx

ψ

&&
C E

To find the rational points on C we constructed a cover D and used its quotient E.

Example 9.8 The curve

C : X 4 −17 = 2Y 2

has points everywhere locally. We will use descent to show that C (Q) =;. Write

X = x

z
, Y = y

z2 , x, y, z ∈Z, gcd(x, z) = 1.

so

x4 −17z4 = 2y2.

Note y is even: write y = 2y1. So

x4 −17z4 = 8y2
1 .

Obtain

(x2 + z2
p

17)(x2 − z2
p

17) = 8y2
1 . (6)

Let K =Q(
p

17), and O its ring of integers:

O =Z+Z (1+p
17)

2
.

The ring of integers O has class number 1 (thus it is a UFD). We rewrite (6) as(
x2 + z2

p
17

2

)(
x2 − z2

p
17

2

)
= 2y2

1 ;

The two factors on the left belong to O , and their gcd divides divides x2 and
p

17z2, so
divides

p
17. But 17 - y. So the two factors are coprime. Moreover the unit group of O is

O× = {±(4+p
17)n : n ∈Z},

and 2 factors in O as



2 =
(

5+p
17

2

)(
5−p

17

2

)
.

So

x2 + z2
p

17

2
=αµ2,

x2 − z2
p

17

2
= ᾱµ̄2, µ ∈O

and

α=±
(

5±p
17

2

)
, or α=±

(
5±p

17

2

)
(4+p

17).

Since αᾱ= 2, and α> 0 we have

α=
(

5±p
17

2

)
.

So

x2 + z2
p

17

2
=

(
5±p

17

2

)
(u + v

p
17)2 u, v ∈Q.

Expanding

x2 + z2
p

17 = (
5u2 +85v2 ±34uv

)+ (±(u2 +17v2)+10uv
)p

17,

and equating coefficients of 1,
p

17 gives{
5u2 +85v2 ±34uv = x2

±(u2 +17v2)+10uv = z2.

The important point is that, for each a =±1, these two equations define a curve Da over
Q, and C (Q) =∪φa(Da(Q)), even though the descent argument used factorization over
an extension.

Finally, it is possible to check that Da(Q17) =;. Thus C (Q) =;.

9.2. A more general example: descent of hyperelliptic curves

Suppose that

C : y2 = f (x),

where f ∈Z[x] is irreducible with even degree n. Homogenizing we have

Y 2 = F (X , Z )

where F is homogeneous and F (x,1) = f (x). Let θ be a root of f and K = Q(θ). Then
we can factor



Y 2 = (X −θZ )G(X , Z )

Using algebraic number theory

X −θZ =α ·µ2

where α= a0 +a1θ+·· ·an−1θ
n−1 belongs to a finite computable set, and µ ∈ K . Write

µ= u0 +u1θ+·· ·+un−1θ
n−1. Expanding we obtain

X −θZ =Qα
1 (u0, . . . ,un)+Qα

2 (u0, . . . ,un)θ+·· ·+Qα
n (u0, . . . ,un)θn−1.

where the Qα
i are homogeneous quadratic forms with coefficients in Q. Comparing

coefficients we have obtain covers

Dα :


Qα

3 (u0, . . . ,un) = 0
...

Qα
n (u0, . . . ,un) = 0,

These covers satisfy

C (Q) =⋃
α
φa (Dα(Q)) . (7)

One can probably obtain information about the rational points on C (Q) by studying
the local solubility of the Dα, their rational points and the rational points of their quo-
tients.

The strategy explained above is a crude approximation to 2-cover descent on hy-
perelliptic curves. For more on that see Stoll’s lectures and also the papers [4], [5] of
Bruin and Stoll. A generalization of 2-cover descent is given in [20].

10. Divisors

Let C be a curve over k. A divisor D on C is a formal linear combination

D =
n∑

i=1
ai Pi , ai ∈Z, Pi ∈C (k).

We define the degree of D to be
∑

ai . We say that D is rational if it is invariant under
Gal(k/k).

Example 10.1 Let

C : y2 = x(x2 +1)(x3 +1).

This is a genus 2 curve defined overQ. Let

D1 = 2 · (0,0)+ (1,2), D2 = (i ,0)− (−i ,0), D3 = (i ,0)+ (−i ,0)−2 · (1,2).



These are divisors and their degrees are

deg(D1) = 3, deg(D2) = 0, deg(D3) = 0.

Observe that any σ ∈ Gal(Q/Q) sends i to itself (e.g. σ is the identity) or changes its
sign (e.g. σ is complex conjugation). Thus D1 is rational, D3 is rational, but D2 is not
rational, since complex conjugation negates it.

The divisor group of C /k, denoted by Div(C /k) is the set of rational divisors of C /k.
This is obviously an abelian group with addition defined in the obvious formal way.
The degree 0 subgroup of the divisor group is the subgroup

Div0(C /k) := {D ∈ Div(C /k) : deg(D) = 0}.

This is an abelian group.

Example 10.2 We continue Example 10.1. In the example D3 ∈ Div0(C /Q), but D1, D2 ∉
Div0(C /Q).

11. Principal Divisors

Let C be a curve defined over a field k. Let k(C ) be the function field of C , and let
f ∈ k(C )∗. If P ∈ C (k) then there is υP ( f ) ∈ Z which measures the order of vanishing
of f at P . Define

div( f ) = ∑
P∈C (k)

υP ( f ) ·P.

A divisor of the form div( f ) is called a principal divisor.

Fact 11.1 If f ∈ k(C )∗ then div( f ) ∈ Div0(C /k).

Example 11.2 Let f = x2−7
x3 on P1/Q. Then

div( f ) =−3 · (0)+ (
p

7)+ (−p7)+∞.

Intuitively, if x is large, then f ∼ 1/x which explains why it vanishes to order 1 at ∞.
Observe that div( f ) ∈ Div0(P1/Q).

12. The Picard Group

It follows from Fact 11.1 that

Princ(C /k) := {div( f ) : f ∈ k(C )∗}

is contained in Div0(C /k). This is called the subgroup of principal divisors. It is easy
to show that it is a subgroup using the properties



div(1) = 0, div( f g ) = div( f )+div(g ), div(1/ f ) =−div( f ),

that follow from the definition of div. We define the Picard group of C /k as

Pic0(C /k) := Div0(C /k)

Princ(C /k)
.

The following two theorems are standard consequences of the Riemann–Roch Theo-
rem (See [21, Chapters II and III]).

Theorem 8

Pic0(P1/k) = 0.

Theorem 9 Let

E : y2 = x3 + Ax +B , A,B ∈ k, 4A3 +27B 2 6= 0.

be an elliptic curve over k. Then

E(k) ∼= Pic0(E/k), P 7→ [P −∞]. (8)

In (8), the group operation on E(k) is the usual one defined by secants and tangents.
If C is a curve that isn’t an elliptic curve, what is the correct object to replace E(k)

in the isomorphism (8)?

13. Jacobians

Let C /k be a curve of genus g . We don’t define the Jacobian JC of C , but mention that
it is a g -dimensional abelian variety defined over k that is ‘functorially associated’ to
C . An elliptic curve E is its own Jacobian JE = E .

Theorem 10 (Mordell–Weil Theorem) If k is a number field then JC (k) is a finitely gen-
erated abelian group.

The proof uses descent and heights and is similar to the proof of the Mordell–Weil
Theorem for elliptic curves. We can often compute JC (k) in practice, but there is no
algorithm guaranteed to work. For more on this see the lectures by Müller and by Bal-
akrishnan.

Theorem 11 Let C be a curve with C (k) 6= ;. Then

JC (k) ∼= Pic0(C /k).

For more on this theorem see [16, Section 3]. We usually use elements of Pic0(C /k) to
represent elements of JC (k).



Example 13.1 We continue Example 10.1. Let

C : y2 = x(x2 +1)(x2 +3).

This is a curve of genus 2 defined over Q. It has one rational point at infinity which we
denote by ∞ (and which we see on a smooth model in a projective plane with appro-
priate weights). The curve C has genus 2. Using descent it is possible to show that

JC (Q) = Z

2Z
· [(0,0)−∞]⊕ Z

2Z
· [(i ,0)+ (−i ,0)−2∞].

It is easy to check that

[(0,0)−∞]+ [(i ,0)+ (−i ,0)−2∞] = [(
p−3,0)+ (−p−3,0)−2∞];

to check this the reader should write down a function on C whose divisor is

(0,0)+ (i ,0)+ (−i ,0)− (
p−3,0)− (−p−3,0)−∞.

Definition 13.2 Let C /k be a curve of genus ≥ 1. Let P0 ∈ C (k). The Abel–Jacobi map
associated to P0 is the embedding

ι : C ,→ JC , P → [P −P0] .

Lemma 13.3 If C has genus ≥ 1 and P0 ∈ C (k) then ι(C (k)) ⊆ JC (k). If moreover JC (k)
is finite (and we know it) we can compute C (k).

Example 13.4 We continue Example 13.1.

JC (Q) =
{

0, [(0,0)−∞], [(i ,0)+ (−i ,0)−2∞], [(
p−3,0)+ (−p−3,0)−2∞]

}
.

We can take ι : C ,→ JC , P 7→ [P −∞], and using this we find that

C (Q) = {∞, (0,0)}.

Question: If JC (Q) is infinite, but we knew a Mordell–Weil basis, can we still recover
C (Q)?

The quick answer is that sometimes we can using Chabauty and the Mordell–Weil
sieve.

14. Chabauty’s Theorem

Let C /Q be a curve of genus ≥ 2. We shall henceforth write J = JC . Write

g = genus(C ), r = rank(J (Q)).



Theorem 12 (Chabauty, 1941) If r ≤ g −1 then C (Q) is finite.

This theorem is superceded by Faltings’ Theorem, which asserts finiteness of C (Q)
with no condition on r . However as we shall see, the proof strategy often allows us to
compute C (Q) provided the condition r ≤ g −1 is satisfied. Coleman [11] proved the
following stronger theorem.

Theorem 13 (Coleman, 1995) Let p be a prime of good reduction for C and suppose
p > 2g . If r ≤ g −1 then

#C (Q) ≤ #C (Fp )+2g −2.

The method of Chabauty (or Chabauty–Coleman) is based on the proof of Coleman’s
Theorem.

15. Chabauty’s Method

15.1. Differentials

Let C be a curve of a field k with g = genus(C ). Write ΩC for the space of regular
differentials. This is a k-vector space of dimension g .

Example 15.1 Let f ∈ k[x] satisfy disc( f ) 6= 0. Suppose char(k) 6= 2. Let

C : y2 = f (x).

We know

g =
{

(d −2)/2 d even

(d −1)/2 d odd
d = deg( f ).

Then a k-basis for ΩC is

d x

y
,

xd x

y
, . . . ,

xg−1d x

y
.

15.2. A Pairing

Let C be a curve overQp (p is a finite prime). Then there is a pairing

〈 , 〉 : ΩC × J (Qp ) →Qp ,

which is defined by

〈ω, [
∑

Pi −Qi ]〉 =∑∫ Pi

Qi

ω.

The pairing has the following properties:



1. it isQp -linear on the left;
2. it is Z-linear on the right;
3. the kernel on the right is J (Qp )tors (the torsion subgroup of J (Qp ).

Example 15.2 Here we follow the expository article of McCallum and Poonen, “The
Method of Chabauty and Coleman” [15], to compute an integral on a curve. Let

C : y2 = x6 +8x5 +22x4 +22x3 +5x2 +6x +1.

This is a curve of genus 2 with two points at infinity (defined overQ). We work overQ3.

∫ (−3,1)

(0,1)

d x

y
=

∫ (−3,1)

(0,1)
(1+6x +5x2 +22x3 +22x4 +8x5 +x6)−1/2d x

=
∫ (−3,1)

(0,1)
(1−3x +11x2 −56x3 +·· · )d x

=
∫ −3

0
(1−3x +11x2 −56x3 +·· · )d x

=
[

x − 3x2

2
+ 11x3

3
− 56x4

4
+·· ·

]x=−3

x=0

= (−3)− 3 · (−3)2

2
+ 11 · (−3)3

3
− 56(−3)4

4
+·· ·

≡ 87 (mod 35).

The integral above is called ‘a tiny integral’, where the two end points are sufficiently
p-adically close to ensure p-adic convergence when evaluating the p-power series.

If D ∈ J (Qp ) then there exists a computable n > 0 such that

nD =∑
[Pi −Qi ]

where Pi are p-adically close to the Qi . If ω ∈ΩC then

〈ω,D〉 = 1

n
〈ω,nD〉 = 1

n

∑∫ Pi

Qi

ω.

The integrals are all tiny and so can be evaluated as in the above example.

Example 15.3 We continue Example 15.2. Want to approximate
∫ ∞+
∞− d x/y. One can

show that

9[∞+−∞−] = [(−3,1)− (0,1)].

Thus ∫ ∞+

∞−

d x

y
= 1

9

∫ (−3,1)

(0,1)

d x

y
= 1

9
(87+O(35)) = 29

3
+O(33).



Likewise ∫ ∞+

∞−

xd x

y
= 1

9

∫ (−3,1)

(0,1)

xd x

y

= 1

9
(72+O(35))

= 8+O(33).

Lemma 15.4 Let C be a curve over Q of genus g . Write r for the rank of J (Q). Suppose
r ≤ g −1. Let p be a prime. Then there is some non-zero ω ∈ΩC /Qp such that

〈ω,D〉 = 0 for all D ∈ J (Q).

Proof: The proof follows trivially from the properties of the integration pairing 〈 , 〉,
the fact that dim(ΩC /Qp ) = g , and basic linear algebra. Convince yourself that this is
true. �

We call an ω as in Lemma 15.4 an annihilating differential.

Example 15.5 We continue Example 15.2. A basis for ΩC /Q3 is d x/y, xd x/y. Using de-
scent it is possible to show that

J (Q) ∼=Z · [∞+−∞−].

We want ω= εd x/y +xd x/y such that 〈ω, [∞+−∞−]〉 = 0. But

〈d x

y
, [∞+−∞−]〉 = 29

3
+O(33), 〈xd x

y
, [∞+−∞−]〉 = 8+O(33).

So we take

ε= −8+O(33)

29/3+O(33)
= 69+O(34).

We focus on finding rational points P ∈ C (Q) such that P = (t , s) ≡ (0,1) (mod 3).
Suppose P is such a point. Now [P − (0,1)] ∈ J (Q) thus∫ (t ,s)

(0,1)
ω= 0

where ω = εd x/y + xd x/y is the annihilating differential. Note that this is a tiny inte-
gral: ∫ (t ,s)

(0,1)
ω=

∫ (t ,s)

(0,1)
(ε+x)

d x

y

=
∫ t

0
(ε+x)(1−3x +11x2 −56x3 +·· · )d x

= εt + −3ε+1

2
t 2 + 11ε−3

3
t 3 +·· · .



Note t ≡ 0 (mod 3). So t = 3z where z ∈Z3. So

(−4 ·32 +O(35))z + (−103 ·32 +O(37))z2 + (35 +O(36))z3 + ∑
j≥4

O(34)z j = 0.

We need the following theorem of Strassmann; for a proof see the book of Cassels on
local fields [8].

Theorem 14 (Strassmann) Let f = ∑
i≥0 ai zi be a powerseries with ai ∈ Zp , such that

lim ai = 0. Let k = minυp (ai ), and let

N = max{ j : υp (a j ) = k}.

Then the number of zeros of f in Zp is ≤ N .

Example 15.6 Back to the example. For the powerseries

(−4 ·32 +O(35))z + (−103 ·32 +O(37))z2 + (35 +O(36))z3 + ∑
j≥4

O(34)z j = 0.

we have k = 2, and

N = max{1, 2} = 2.

So the equation in z has at most two solutions. There are at most two rational points
P ∈ C (Q) such that P = (t , s) ≡ (0,1) (mod 3). But we know two such points: (0,1) and
(−3,1). So there are no others. Now check for yourself that

C (F3) = {∞+, ∞−, (0,1), (0,2)}.

By searching for rational points on C we find

∞+, ∞−, (0,1), (0,−1), (−3,1), (−3,−1).

Are they all? From the points of C (F3), we know that every P ∈C (Q) must satisfy P ≡ P0

(mod 3) where P0 is one of the following rational points:

∞+, ∞−, (0,1), (0,−1).

Using Chabauty (i.e. the strategy above) we obtain a bound on the number of points
congruent to P0 for each one of these four points:

P0 bound on number of rational known rational
P ≡ P0 (mod 3) P ≡ P0 (mod 3)

∞+ 1 ∞+
∞− 1 ∞−

(0,1) 2 (0,1), (−3,1)
(0,−1) 2 (0,−1), (−3,−1)

We conclude that

C (Q) = {∞+, ∞−, (0,1), (0,−1), (−3,1), (−3,−1)}.



Note for Chabauty to succeed in finding C (Q):

1. we require r ≤ g −1;
2. we need explicit generators for J (Q) (or some subgroup of J (Q) of finite index);
3. we want some prime p of good reduction so that the known rational points

surject onto the residue classes mod p;
4. in each residue class we want to find enough rational points to match the

Chabauty bound!

Even if we have (1) and (2), we find in most examples that (3) and (4) fail. The
Mordell–Weil sieve often allows us to fix that. Before going on to the Mordell–Weil
sieve, I would like to recommend the expository article of McCallum and Poonen [15]
as well as Wetherell’s thesis [23] as great introductions to the method of Chabauty. For
an approach that uses formal groups instead of differentials, see Flynn’s article [12]
or the book of Cassels and Flynn [10]. The method of Chabauty has been extended in
several ways. The most important of these is ‘elliptic curve Chabauty’. For this I rec-
ommend Bruin’s thesis [1] and Bruin’s paper [2] for an introduction and for applica-
tions to the generalized Fermat equation, and the paper of Flynn and Wetherell [13]
for a beautiful Diophantine application. Other extensions of Chabauty’s method can
be found in [18] and [19].

No account of the method of Chabauty (however brief) would be complete
without mentioning the beautiful paper of Poonen and Stoll [17], where they apply
Chabauty to hyperelliptic curves y2 = f (x) where f is a squarefree polynomial of de-
gree 2g +1. They show for g ≥ 3 that a positive proportion of these curves have exactly
one rational point, and that this proportion converges to 1 as g →∞. The reader will
see shortly how hard we have to work to compute the rational points on one curve—
Poonen and Stoll compute the points for ‘most’ odd degree hyperelliptic curves!

16. The Mordell–Weil Sieve

Let C /Q be a curve, J its Jacobian, and

ι : C ,→ J

an Abel–Jacobi map. We assume that we know J (Q) (in other words, we know a basis
for J (Q)). The Mordell–Weil Sieve is a strategy for producing a ‘small’ finite set W ⊂
J (Q), and a subgroup L ⊂ J (Q) of ‘huge’ index such that

ι(C (Q)) = ⋃
D∈W

D +L.

If P ∈C (Qp ) we define the residue disk of P as

Bp (P ) = {Q ∈C (Qp ) : Q ≡ P (mod p)}.

The number of residue disks is #C (Fp ).
Suppose r < g −1. Let ω be an annihilating differential, and P ∈C (Q). Chabauty’s

method gives a bound Chabp (P ) for the number of points of rational points in the
residue disc of P :



#C (Q)∩Bp (P ) ≤ Chabp (P ).

Let K be the known rational points. If #K ∩Bp (P ) = Chabp (P ) then

C (Q)∩Bp (P ) =K ∩Bp (P ).

I.e. we know all of the rational points in the residue disc of P .

16.1. An Extended Example

We illustrate the need for the Mordell–Weil sieve with a particular example. Let

C : y2 = 2x6 −3x2 −2x +1;

this is a curve of genus 2 defined overQ. The Mordell–Weil group is

J (Q) =Z · [(−2,−11)− (0,1)] .

Thus J has rank 1 and C satisfies the Chabauty bound r ≤ g −1. A short search reveals
the following four points:

K = {(0,1), (0,−1), (−2,11), (−2,−11)}.

An annihilating differential for p = 3 is

ω= (66+O(35))
d x

y
+ xd x

y
.

Applying Chabauty with p = 3 gives

P Chab3(P ) K ∩B3(P )
(0,1) 2 {(0,1)}

(0,−1) 2 {(0,−1)}
(−2,11) 1 {(−2,11)}

(−2,−11) 1 {(−2,−11)}

For P = (−2,−11) and (−2,11) there are no other rational points in the same
residue disc. For P = (0,1) and P = (0,−1) we don’t know.

Let

B9(P ) = {Q ∈C (Q3) : Q ≡ P (mod 9)}.

We can use Chabauty to determine upper bounds for the number of rational points in
this smaller residue disc:

P Chab9(P ) K ∩B9(P )
(0,1) 1 {(0,1)}

(0,−1) 1 {(0,−1)}



For P = (0,1) and (0,−1) there are no other rational points in the smaller residue disc
B9(P ). We deduce the following:

Lemma 16.1 The only rational points in

B9(0,1)∪B9(0,−1)∪B3(−2,11)∪B3(−2,−11), (9)

belong to K = {(0,1), (0,−1), (−2,11), (−2,−11)}.

Note

C (F3) = {(0̄, 1̄) , (0̄, 2̄) , (1̄, 1̄) , (1̄, 2̄).}

It follows that

C (Q3) = B3(0,1)∪B3(0,−1)∪B3(−2,11)∪B3(−2,−11).

Thus (9) does not fill up all of C (Q3). To show that K = {(0,1), (0,−1), (−2,11), (−2,−11)}
is all of the rational points, we need to show that every rational point belongs to (9).
This is what the Mordell–Weil sieve will achieve.

Let P0 = (0,1). Let

ι : C ,→ J , Q 7→ [Q −P0]

be the associated Abel-Jacobi map. Recall

J (Q) =Z ·D, D = [(−2,−11)− (0,1)].

Note that

ι(0,1) = 0, ι(0,−1) =−2D, ι(−2,11) =−3D, ι(−2,−11) = D.

Suppose Q ∈ C (Q). Then ι(Q) = nD with n ∈ Z. We will use reduction mod p for lots
of primes p to ‘predict’n modulo certain integers Np . Let p be a prime of of good
reduction. Let

Np = order of D̄ ∈ J (Fp ).

Consider the commutative diagram

C (Q)
ι

//

red

��

J (Q)

red

��

Z
η

oo

��

C (Fp )
ι

// J (Fp ) Z/NpZ
η

oo

Here η(m) = mD . Define



Wp = {m ∈Z/NpZ : m ·D ∈ ι(C (Fp ))}.

By diagram chasing, if Q ∈C (Q) and n ∈Z satisfies nD = ι(Q) then n (mod Np ) ∈Wp .
To summarize, for every prime p of good reduction, the Mordell–Weil sieve gives

an integer Np and a set Wp such that n mod Np ∈ Wp . In the following table, we give
for some small primes p, the integers Np and sets Wp .

p Np Wp

3 13 {0,1,10,11}
5 21 {0,1,18,19}
7 65 {0,1,13,19,27,36,44,50,62,63}
23 16 {0,1,7,13,14}
61 208 {0,1,24,53,153,182,205,206}

The integers Np in the table are not pairwise coprime. We shall use this to elim-
inate some of the possibilities in the table. Note that 16 | 208. Observe that if n ≡ 24
(mod 208) then n ≡ 8 (mod 16). However, looking at the 4-th row of the table we re-
alize that this is impossible. We can therefore delete the entry 24 from W61 in the 5-th
row. The same is true for the entries 53, 153, 182. Also 13 | 65. We can use this fact, to
delete the entries 19 and 44 for W7. This is what the table now looks like.

p Np Wp

3 13 {0,1,10,11}
5 21 {0,1,18,19}
7 65 {0,1,13,��19,27,36,��44,50,62,63}
23 16 {0,1,7,13,14}
61 208 {0,1,��24,��53,��153,��182,205,206}

We need more data. We shall add the information corresponding to the primes p = 17,
19.

p Np Wp

3 13 {0,1,10,11}
5 21 {0,1,18,19}
7 65 {0,1,13,��19,27,36,��44,50,62,63}
17 39 {0,1,36,37}
19 234 {0,1,42,67,72,82,100,132,150,160,165,190,231,232}
23 16 {0,1,7,13,14}
61 208 {0,1,��24,��53,��153,��182,205,206}

Note that 39 | 234. This allows us to delete all but four entries in W19:

p Np Wp

3 13 {0,1,10,11}
5 21 {0,1,18,19}
7 65 {0,1,13,��19,27,36,��44,50,62,63}
17 39 {0,1,36,37}
19 234 {0,1,��42,��67,��72,��82,��100,��132,��150,��160,��165,��190,231,232}
23 16 {0,1,7,13,14}
61 208 {0,1,��24,��53,��153,��182,205,206}



From the row corresponding to p = 19, we now observe the following: if Q ∈C (Q) then
ι(Q) = nD where n ≡ 0,1,−3,−2 (mod 234). But

ι(0,1) = 0, ι(0,−1) =−2D, ι(−2,11) =−3D, ι(−2,−11) = D.

Take n ≡−3 (mod 234). So n =−3+234m. Then

[Q −P0] = ι(Q) = nD

=−3D +m(234 ·D)

= ι(−2,11)+m(234 ·D)

= [(−2,11)−P0]+m(234 ·D).

Hence [Q − (−2,11)] = m(234 · D). We can repeat this argument with n ≡ 0, 1, −2
(mod 234) to reach the following conclusion.

Lemma 16.2 If Q ∈C (Q) then there exists P ∈K such that

[Q −P ] ∈Z · (234 ·D).

It turns out that Lemmas 16.1 and 16.2 are enough to show that C (Q) =K . To see this
we need a short digression on p-adic filtrations.

16.2. p-adic Filtration

We briefly return to generality with C a curve over Q of genus ≥ 1 and J its Jacobian.
Let p be a prime of good reduction. Let

J m(Qp ) = {D ∈ J (Qp ) : D ≡ 0 (mod pm)}.

We have

J (Qp ) ⊃ J 1(Qp ) ⊃ J 2(Qp ) ⊃ J 3(Qp ) ⊃ ·· ·

is a system of decreasing neighbourhoods of the origin. Also

J (Qp )/J 1(Qp ) ∼= J (Fp ), J m(Qp )/J m+1(Qp ) ∼= (Z/pZ)g for m ≥ 1. (10)

16.3. Continuation of the Extended Example

We return to our extended example of Subsection 16.1. It turns out that

#J (F3) = 13, 234 = 2 ·32 ·13.

By (10) we have 234D ∈ J 3(Q3); that is 234D ≡ 0 (mod 33). We have two important
pieces of information given by Lemma 16.1 and the above computation.



1. If Q ∈C (Q) then there is some P ∈K such that

[Q −P ] ∈Z · (234 ·D).

2. 234D ≡ 0 (mod 33).

Thus

Q ≡ P (mod 33), P ∈K = {(0,1), (0,−1), (−2,11), (−2,−11)}.

So Q belongs to

B27(0,1)∪B27(0,−1)∪B27(−2,11)∪B27(−2,−11)

⊂ B9(0,1)∪B9(0,−1)∪B3(−2,11)∪B3(−2,−11).

Now applying Lemma 16.1 we have

C (Q) = {(0,1), (0,−1), (−2,11), (−2,−11)}.

The reader will note that for this example we needed both Chabauty and the Mordell–
Weil sieve to compute the rational points on C .

16.4. The Mordell–Weil Sieve: More Conceptually

Let C /Q be a curve, J its Jacobian. Fix P0 ∈ J (Q). Let

ι : C ,→ J , P 7→ [P −P0]

be the Abel–Jacobi map. We assume that we know J (Q) (in other words, we know a
basis for J (Q)). As we said previously, the Mordell–Weil Sieve is a strategy for producing
a ‘small’ finite set W ⊂ J (Q), and a subgroup L ⊂ J (Q) of ‘huge’ index such that

ι(C (Q)) = ⋃
D∈W

D +L =: W +L.

We define inductively subgroups of finite index Li ⊂ J (Q), and finite subsets Wi ⊂ J (Q),
such that

L0 ⊇ L1 ⊇ L2 ⊇ L3 ⊃ ·· ·

and

ι(C (Q)) ⊂Wi +Li .

Start: let

L0 := J (Q), W0 := 0.



Inductive Step: choose a prime p of good reduction. Consider the commutative dia-
gram

C (Q)
ι

//

red

��

Wi +Li ⊆ J (Q)

red

��

C (Fp )
ι

// J (Fp )

Let

Li+1 = Ker
(
Li ,→ J (Q) → J (Fp )

)
.

Let

W ′
i+1 =Wi + (Li /Li+1) .

Here by Li /Li+1 we really mean a choice of representatives for the cosets of Li+1 in
Li . Clearly W ′

i+1 +Li+1 = Wi +Li . So ι(C (Q)) ⊂ W ′
i+1 +Li+1. The vertical arrow on the

right-hand side of the above diagram now factors through W ′
i+1:

C (Q)
ι

//

red

��

W ′
i+1 +Li+1

red

�� ((

C (Fp )
ι

// J (Fp ) W ′
i+1

red

oo

Let

Wi+1 = {w ∈W ′
i+1 : red(w) ∈ ι(C (Fp ))}.

Then ι(C (Q)) ⊂Wi+1 +Li+1. This completes the inductive step of the definition.

In practice, if the primes p are chosen randomly then the method quickly leads to
a combinatorial explosion: the set Wi would grow very very quickly. Roughly speaking,
a good choice of p would have

• [Li : Li+1] is small;
• #J (Fp ) is smooth.

The first assumption means that W ′
i+1 is not too big compared to Wi , so that it is fea-

sible to compute Wi+1. The second assumption is more subtle. To understand it the
reader should go back to the example and recall that what made the Mordell–Weil
sieve work there was the fact that the numbers Np have common factors, and so in-
formation modulo one Np has a good chance of contradicting information modulo
another Np .



In practice, with a good strategy for choosing the p, we usually find that

Wi = ι(K ) (K ⊂C (Q) are the known points)

for large i , and the index [J (Q) : Li ] is growing (albeit slowly). The Li are decreasing
neighbourhoods of the origin in the profinite topology. When the Mordell–Weil sieve
works, it tells us that every rational point on C is close, in the profinite topology on
J (Q), to one of the known ones. For more on the right strategy for the Mordell–Weil
sieve I refer the reader to [6] and to [7].

16.5. Integral Points on a Genus 2 Curve

Let’s see one more example of the Mordell–Weil sieve given in [7]. Let

C : y2 − y = x5 −x, ι : C ,→ J , P 7→ [P −∞].

The Mordell–Weil group is

J (Q) =Z ·D1 ⊕Z ·D2 ⊕Z ·D3,

where

D1 = [(0,1)−∞], D2 = [(1,1)−∞], D3 = [(−1,1)−∞] .

The rank exceeds the genus and so the method of Chabauty is inapplicable. This does
not however stop us from applying the Mordell–Weil sieve. The known rational points
are

K = {∞, (−1,0), (−1,1), (0,0), (0,1), (1,0), (1,1), (2,−5),

(2,6), (3,−15), (3,16), (30,−4929), (30,4930), (1/4,15/32),

(1/4,17/32), (−15/16,−185/1024), (−15/16,1209/1024)}.

Using 922 prime p < 106 it can be shown that

ι(C (Q)) ⊂ ι(K )+L

where

[J (Q) : L] ∼ 3.32×103240.

The shortest non-zero vector in L has length ∼ 1.156 × 101080. From the theory of
heights it follows that if P ∈C (Q)\K then

H(P ) ≥ exp(102160).

Here H(P ) is the naive height: if P = (X /Z 2,Y /Z 5) with X , Y , Z integers and
gcd(X ,Y ) = 1 then H(P ) = max{X , Z 2}. Baker’s theory [7] tells us that if P is an integral
point on C then



H(P ) ≤ exp(10565).

So we know all the integral points:

C (Z) = {(−1,0), (−1,1), (0,0), (0,1), (1,0), (1,1), (2,−5),

(2,6), (3,−15), (3,16), (30,−4929), (30,4930)}.

We end with the following challenge: How do you find the rational points on C ?
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