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Abstract. Let (un)n≥0 be the binary recurrent sequence of integers given by

u0 = 0, u1 = 1 and un+2 = 2(un+1 + un). We show that the only positive

perfect powers in this sequence are u1 = 1 and u4 = 16.
We also discuss the problem of determining perfect powers in Lucas se-

quences in general.

1. Introduction and Results

Recently, Bugeaud, Mignotte and Siksek [7] showed that if (Fn)n≥0 is the Fi-
bonacci sequence given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for n ≥ 0, then
Fn is a perfect power only for n = 0, 1, 2, 6 and 12; equivalently Fn ∈ {0, 1, 8, 144}.
Their method combines the classical approach to Diophantine equations via linear
forms in logarithms with the modular approach via Frey curves. This method ap-
plies to a large class of Diophantine problems including the determination of all
the perfect powers in the set of values taken by quadratic polynomials (see [8], for
example).

The five main steps used in [7] to solve the equation

Fn = yp, n > 2, p > 3,

are the following (we simplify a little):
Step 1. Using some (new) lower bounds for linear forms in three logarithms one

gets an upper bound on the (prime) exponent p, say

p < 2× 108;

Step 2. The modular method is used for all p < 2× 108 to prove the congruence

n ≡ ±1 (mod p),

(the computer time was around 50 hours);
Step 3. The previous condition allows us to view the initial linear form in three

logarithms as a linear form in two logarithms, which leads to the important progress

p ≤ 733;

Step 4. A detailed study of the family of Thue equations corresponding to the
range 5 ≤ p ≤ 733 leads to the condition

n < 109000,

(recall that n is an index!);
Step 5. Using once more the modular method one proves that there is no solution

for 5 ≤ p ≤ 733 (the computer time was less than 100 hours). The proof is complete
since the solutions for p = 2 and p = 3 were known for many years.
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The principal goal of this note is to show that this method works—at least
in principle—for a larger family of equations, namely that it can be applied to
determine the complete list of perfect powers in a wide class of Lucas sequences.

Definition. A Lucas pair is a pair (α, β) of algebraic integers such that α + β
and αβ are non-zero rational integers and α/β is not a root of unity. For a given
Lucas pair (α, β), one defines the corresponding Lucas sequence by

un = un(α, β) =
αn − βn

α− β
(n = 0, 1, 2, . . .).

The Fibonacci sequence is clearly the Lucas sequence corresponding to the Lucas
pair ((1 +

√
5)/2, (1−

√
5)/2). We study the equation

un = yp,

in integers n ≥ 0, y and prime exponent p ≥ 2. For any p, it has the trivial
solution u1 = 1p, and also sometimes the trivial solution u−1 = ±1p (exactly when
αβ = ±1). The existence of solutions for any p makes its complete resolution very
difficult, since one can no longer hope to solve it by only using congruences to
suitable moduli. One important step is to prove, for large n, that

n ≡ 1 (mod p) or n ≡ ±1 (mod p),

respectively. This was a difficult part of the proof for the Fibonacci case, which
corresponds to Steps 1 and 2 above. Here, we present an example where this part
is rather easy. Moreover, for this example we try to minimize the time of computer
verification.

Theorem 1. Let (un)n≥0 be the binary recurrent sequence defined by the initial
values u0 = 0, u1 = 1 and the recurrence un+2 = 2(un+1 + un). The only positive
perfect powers in the sequence (un)n≥0 are u1 = 1 and u4 = 16.

The sequence (un) appearing in Theorem 1 is in fact the Lucas sequence cor-
responding to the Lucas pair (1 +

√
3, 1 −

√
3). As shown by the proof of Theo-

rem 1, the method used in [7] can be simplified for many Lucas sequences (un)n≥0.
Roughly speaking, for a certain class of Lucas sequences, one can skip or signif-
icantly simplify the first two steps of the above proof-scheme and begin directly
with the study of a linear form in two logarithms, which leads of course to rather
good upper bounds for the exponent p in the equation un = yp. This is precisely
the case for the sequence considered in Theorem 1. This is also the case with the
Nagell–Ljunggren equation

xn − 1
x− 1

= yp

(see the survey [6]).
We postpone to Section 8 more information on the class of Lucas sequences

(un)n≥0 for which it is possible to avoid or significantly simplify the first two steps
of the above proof-scheme. Some related open problems are briefly evoked in Section
9. Sections 2 to 7 are devoted to the proof of Theorem 1. More precisely, Sections
2 and 3 (resp. Section 4, Section 5, Sections 6 to 7) correspond to Steps 1 and 2
(resp. Step 3, Step 4, Step 5) of the above scheme of proof.

Throughout this paper, for a prime number p and a positive integer m we write
ordp(m) for the order at which p appears in the factorization of m. For a positive
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real number x, we write bxc for the largest positive integer smaller than or equal
to x, the ‘floor’ function, whereas dxe is the ‘ceiling’ function, that is the smallest
positive integer greater than or equal to x.

Throughout Sections 2 to 7, we let (un)n≥0 be the binary recurrent sequence
given by u0 = 0, u1 = 1 and un+2 = 2(un+1 + un) for n ≥ 0.

Acknowledgments. This paper was initiated during a visit of the second au-
thor at the Université Louis Pasteur, Strasbourg, in September 2004. He warmly
thanks the Mathematical Department for its hospitality. The first three authors
were supported in part by the joint Project France-Mexico ANUIES-ECOS M01-
M02.

The authors warmly thank the referee for several useful comments.

2. Preliminary Results

We start with the following elementary result.

Lemma 2.1. If n ≥ 1, then

(1) ord2(un) = bn/2c+ ord2(n) + δn,

where δn = 0 if n is odd or if 4 divides n, and δn = −1 otherwise.

Proof. The characteristic equation of the sequence (un)n≥0 is

x2 − 2x− 2 = 0.

Its roots are α = 1 +
√

3 and β = 1 −
√

3, thus the general term of the sequence
(un)n≥0 is given by

(2) un =
αn − βn

α− β
=

1
2
√

3
(αn − βn) .

Setting α1 = α/
√

2 and β1 = β/
√

2, we get

un =
2n/2

2
√

3
(αn

1 − βn
1 ) .

Note that α1 and β1 are algebraic integers which are biquadratic units. Assume
first that n is odd. Then

un = 2bn/2c
(

αn
1 − βn

1

α1 − β1

)
.

One checks easily that the numbers

ũk =
α2k+1

1 − β2k+1
1

α1 − β1
=

α · (2 +
√

3)k − β · (2−
√

3)k

α− β

are all odd integers for k = 0, 1, . . . In fact, ũ0 = 1, ũ1 = 3 are both odd and the
recurrence

ũk+2 = 4ũk+1 − ũk

holds for all k ≥ 0 (notice that 2±
√

3 are the roots of the polynomial X2−4X +1).
Clearly, ũk+2 ≡ ũk (mod 2), and by induction on the parameter k, we get that
indeed ũk is odd for all k ≥ 0. Hence, formula (1) holds for odd values of n.
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From now on, we assume that n = 2k is even. Let α2 = α2
1 = 2 +

√
3 and

β2 = β2
1 = 2−

√
3. Then

u2k = 2k

(
αk

2 − βk
2

α2 − β2

)
= 2n/2wk, where wk =

αk
2 − βk

2

α2 − β2
.

It remains to show that ord2(wk) = ord2(n) + δn = ord2(k) + δ2k + 1. We first
prove that this is the case when k = 2s for some integer s ≥ 0, and we shall treat
the general case later. For s ≥ 0, we let zs = α2s

2 + β2s

2 . It is clear that zs is an
integer. Note that w20 = w1 = 1, w21 = z0 = α2 + β2 = 4, and

w2s =
∏

0≤k≤s−1

zk

for all s ≥ 1. Furthermore, if s ≥ 1, then

zs = α2s

2 + β2s

2 =
(
α2s−1

2 + β2s−1

2

)2

− 2(α2β2)2
s−1

= z2
s−1 − 2.

Reducing the above relation modulo 4, since z0 = 4, we get, by induction on s ≥ 1,
that ord2(zs) = 1 for all s ≥ 1. Hence, ord2(w2s) = s + 1 if s ≥ 1 and is 0 if s = 0.
Thus, formula (1) holds when n = 2k and k = 2s for some s ≥ 0. In now suffices to
prove it when n = 2k and k = 2sm, where m ≥ 3 is some odd integer. In this case,

u2k = 2kwk = 2kw2s

(
w2sm

w2s

)
.

It suffices to show that the quotient in the right-hand side is an odd integer. How-
ever,

w2sm

w2s

=
α2sm

2 − β2sm
2

α2s

2 − β2s

2

=
m−1∑
t=0

α2st
2 β

2s(m−t−1)
2 .

Clearly,

α2st
2 =

(
zs − β2s

2

)t

≡ (−1)tβ2st
2 (mod 2)

(here, we say that two algebraic integers λ and µ are congruent modulo 2 if (λ−µ)/2
is also an algebraic integer). Thus,

m−1∑
t=0

α2st
2 β

2s(m−1−t)
2 ≡

m−1∑
t=0

(−1)tβ
2s(m−1)
2 ≡ mβ

2s(m−1)
2 ≡ β

2s(m−1)
2 (mod 2),

as m is odd. Since β2 is a unit, it follows that the integer w2sm/w2s is odd. The
lemma is therefore proved. �

Classically, we introduce the (Lucas) companion sequence to (un)n≥0, that is the
sequence (vn)n≥0 defined by

vn = αn + βn, (n ≥ 0),

so that
v0 = 2, v1 = 2, vn+2 = 2(vn+1 + vn) for n ≥ 0.

Then, one checks easily that

(3) 12u2
n − v2

n = −(−2)n+2,

and that

(4) u2n = unvn
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hold for any n ≥ 0.

Corollary 2.2. The sequence vn = αn + βn, where α = 1 +
√

3 and β = 1 −
√

3,
satisfies

ord2(vn) =


dn/2e, if n is odd,
2 + n/2, if 2 || n,
1 + n/2, if 4 | n.

Proof. We use the relation 12u2
n − v2

n = ±2n+2 and the above Lemma 2.1.
If n is odd, then 2n+1 || 12u2

n, and we get easily that 2n+1 || v2
n; hence, the result

in this case.
If 2 || n, then 2n+2 || 12u2

n and

v2
n = 12u2

n + 2n+2 ≡ 2n+4 (mod 2n+5),

and we see that 22+n/2 || vn.
If n is a multiple of 4, then 2n+4 divides 12u2

n and

v2
n = 12u2

n + 2n+2 ≡ 2n+2 (mod 2n+4),

and the asserted result follows. �

3. Reductions

In this section, we prove the following result.

Proposition 3.1. Let (un)n≥0 be the binary recurrent sequence given by u0 = 0,
u1 = 1 and un+2 = 2(un+1 + un).

The only squares in this sequence are u0 = 0, u1 = 1 and u4 = 16.
The equation

un = yp, for p prime ≥ 3,
has only the solution n = 0 for n even. If n is odd and greater than 1, then n > 100
and p ≥ 41, and if such a solution exists, then there exists at least one solution with
n prime.

Proof. Firstly, we determine the squares among the sequence (un)n≥0. Suppose
that un is a square, say un = z2. Then the relation (3) implies

12z4 − v2
n = −(−2)n+2.

If n is odd, then ord2(u2
n) = n− 1 and ord2(v2

n) = n+1. Thus, we get a relation
of the form

3X4 = Y 2 + 2.

Working in the imaginary quadratic field Q(
√
−2), we easily see that this relation

leads to the Thue equation

a4 + 4a3b− 12a2b2 − 8ab3 + 4b4 = ±1.

Using PARI, in less than 0.1 second we get that the only solutions are the trivial
ones, namely (a, b) = (±1, 0). This implies that un = 2(n−1)/2. Considering the
rate of growth of un that is immediate from equation (2), we deduce that n = 1.

If n is even then, using Lemma 2.1, we see that ν := ord2(n) must be even and
the relation (3) implies now

3 · 2n+2ν+2 ·X4 − 2n+2Y 2 = −2n+2,
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where X and Y are odd integers. After simplification, we get a relation of the form

3Z4 − Y 2 = −1.

This kind of equation has been studied by Ljunggren [18], who proved that it cannot
have more than two solutions in positive integers. Since (Z, Y ) = (1, 2) and (2, 7)
are two positive solutions, there are no other ones. Consequently, the only positive
squares in the sequence (un)n≥0 are u1 = 1 and u4 = 16.

Suppose now that un = yp where p is prime and n = 2m is even. Then, by the
two above formulas (3) for the index n and (4), there are positive odd numbers X
and Y such that

um = 2rXp, vm = 2sY p

for some non negative integers r and s, and (3) — now for the index m — gives

12 · 22rX2p − 22sY 2p = −(−2)m+2.

If m is odd, by Lemma 2.1 and Corollary 2.2, the previous relation becomes

3 X2p − Y 2p = 2.

By a result of Bennett [2] this implies X2 = Y 2 = 1, which gives no solutions for
un = yp in this case (that is, when ord2(n) = 1).

If ord2(m) = 1, then equation (3), for the index m, gives after simplification

3 X2p − 4Y 2p = −1.

By another result of Bennett [1], this implies again X = Y = 1, which gives again
no solutions for un = yp in this case (that is when ord2(n) = 2).

If 4 | m, then, putting γ = ord2(m) so that γ ≥ 2, we get

3 · 22γX2p − Y 2p = −1.

By Theorem 1.5 of Bennett and Skinner [3], this equation has no nontrivial solution
if p ≥ 7 and γ ≥ 3. But in this case, we can also proceed as follows. Put m = 2k.
Then vk = 2tZp, where Z is some positive odd integer and

v2
k = vm + 2k+1.

If 2 || k (that is, if γ = 2), then, after simplification, we get

8Z2p = Y p + 1,

where vk = 2tZp for some positive integers t and Z with Z odd, and Theorem 1.2 of
Bennett and Skinner [3] says that this equation has no nontrivial solution if p ≥ 7.
If 4 | k, then the simplification gives

2Z2p = Y p + 1,

and a theorem of Darmon and Merel [11] implies that there is no nontrivial solution
(that is with |Y Z| > 1) for p ≥ 3. To summarize, the only remaining cases (for n
even) correspond to the solutions of the Diophantine equation

8Z2p − Y p = 1, p < 7.

It is easy to see that this equation has no nontrivial solution for p = 3 [use the
factorization 8Z3 − Y 6 = (2Z − Y 2)(4Z2 + 2ZY 2 + Y 4)], and a direct application
of PARI (to the Thue equation 8Xp − Y p = 1), for p = 5 proves that there is no
solutions for un = yp (with 8 | n) for p = 5.
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Moreover, a short and easy computation (a few seconds with PARI) shows that
for a prime p ≥ 3,

un = yp =⇒ n ≤ 4 or n > 100.

Finally, when n > 1 is odd, considering the Thue equations associated to the
equations un = yp for p ∈ {3, 5, . . . , , 37}, using PARI (the time of computation
being around 30 minutes), we see that there is no solution for these exponents. We
are very grateful to Guillaume Hanrot who wrote an extension of PARI, Version
2.2.8 (development CHANGES-1.1035), which contains a new treatment of Thue
equations based on his paper [12]. In this paper, he showed that the knowledge of
a subgroup of finite index in the full group of units is actually sufficient to solve a
Thue equation (one bottleneck of the classical algorithm is the computation of the
unit group of the field). With this new software, we can solve Thue equations of
rather large degree in a reasonable time and get a guaranteed result (the older
version used GRH to give a fast non-guaranteed result and the algorithm without
assuming GRH was terribly slow for medium size examples).

Applying also an argument found independently by Pethő [24] and Robbins [26]
(see also the proof of Proposition 6.2 of [7]), we can prove that if there is a solution
of un = yp for n > 1 odd, then there is also such a solution with n > 1 and prime.
This completes the proof of the proposition. �

To prove Theorem 1, we need some estimates from the theory of lower bounds
for linear forms in logarithms of algebraic numbers.

Let α1 and α2 be algebraic numbers. Write IL = Q[α1, α2] and D for the degree
of IL over Q. We write A1 and A2 for positive integers such that

(5) log Ai ≥ max
{

h(αi),
|log αi|

D
,

1
D

}
(i = 1, 2).

Here, for an algebraic number α whose minimal polynomial over Z is of the form
P (X) = a

∏d
i=1(X − α(i)), we write h(α) for its logarithmic height given by

h(α) =
1
d

(
log|a|+

d∑
i=1

log
(
max{1, |α(i)|}

))
.

In other words,

h(α) =
1
d

log M(α),

where M(α) := M(P ) is the Mahler measure of the minimal polynomial of α over
the rational integers.

Let b1 and b2 be positive integers and put

Λ = b2 log α2 − b1 log α1

and

b′ =
b1

D log A2
+

b2

D log A1
.

The next result is Corollaire 2 on page 288 in [16] and gives a lower bound for
log|Λ|.
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Theorem 2. Assume that α1 and α2 are real, positive, and multiplicatively inde-
pendent. Then

log|Λ| > −24.34 D4

(
max

{
log b′ + 0.14,

21
D

,
1
2

})2

log A1 log A2.

We point out that in the next section we do not use the Theorem 2 as given
above but a sharper (and technically more involved) version of it for which we will
refer the reader to [16].

In the sequel, we will use the following (equivalent) definition of h(α), due to
André Weil. Let α ∈ K where K is a number field of degree D over the rationals.
Then one defines the archimedean (normalized) valuations of K as follows; if Σ is
the set of different embeddings

σ : K → C
of K into the field of complex numbers, then one puts

|α|σ =

{
|σα|, if σK ⊂ R,
|σα|2, otherwise,

where |·| is the usual absolute value in C.
Any finite valuation of K corresponds to a prime ideal l of K, which is over a

prime rational integer `. If e and f are the index of ramification and the residual
degree of l, respectively, then one puts |α|l = 0 is α = 0, and for α 6= 0,

|α|l = `−fordl(α)/e,

where ordl(α) is the integer ν defined by the conditions

α ∈ lν , α 6∈ lν+1.

Then, the other definition of h(α) is

h(α) =
1
d

(∑
σ

log+|α|σ +
∑

l

log+|α|l

)
,

where
log+ x = log max{1, x}, for x > 0.

4. A bound for p

The main result of this section is the following.

Proposition 4.1. Let (un)n≥0 be the sequence appearing in Proposition 3.1. If
un = yp, where p > 2 is prime and n > 1 is odd, then p < 200.

We shall first give a complete argument based on Theorem 2 which shows that
p ≤ 257. The proof of the above proposition is achieved in the same way by
appealing to the main theorem of [16] instead of Theorem 2.

Consider the equation un = yp. By Proposition 3.1, we can assume that n is
odd and > 100, and also that p ≥ 41. Set m := ord2(y) and put

y = 2mz.
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Thus, z is odd. Then the order at which 2 divides the right hand side of the above
equation is mp, while the order at which 2 divides the left-hand side of the above
equation is, by Lemma 2.1, equal to (n− 1)/2. Thus we have

n = 2mp + 1.

In other words, in this simple case we have proved in an elementary way that

n ≡ 1 mod p.

This corresponds to the congruence n ≡ ±1 mod p proved in [7] for the case of
Fibonacci numbers (notice that both results are best possible since u1 = 1, u−1 =
1/2, whereas F1 = F−1 = 1).

With α = 1 +
√

3 and β = 1−
√

3 as in Section 2, we rewrite the given equation
un = yp as

αn − 2
√

3yp = βn,

or (
α2m

y

)p

− 2
√

3
α

=
1
α

βn

yp
,

which implies that∣∣∣(α2m

y

)p

− 2
√

3
α

∣∣∣ = 2
√

3
α

|β|n

αn − βn
< 1.27 (2/α2)n.

Now we put
Λ = p log

(
α2m/y

)
− log

(
2
√

3/α
)
.

This is a linear form in two logarithms. Forgetting our initial notation and using
the notation of Theorem 2 we have

b1 = p, α1 = α2m/y = (2 +
√

3)m/z, b2 = 1, α2 = 2
√

3/α.

We have
n = 2mp + 1,

and

1.26 <

(
α2m

y

)p

< 1.28,

hence

0 < log
(

α2m

y

)
<

0.25
p

.

By the definition of the Weil logarithmic height,

2 h
(
α2m/y

)
= 2h

(
(2 +

√
3)m/z

)
= log+

(
α2m/y

)
+ log+(|β|2m/y) + 2 log z,

(notice that the algebraic number 2 +
√

3 is a unit so it has a trivial valuation for
any finite place), so that

h
(
α2m/y

)
=

1
2

log+
(
α2m/y

)
+ log z <

0.13
p

+ log z.

Concerning α2, we obtain

α2 =
2
√

3
1 +

√
3

=
√

3(
√

3− 1) = 3−
√

3,
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which shows that the minimal polynomial of α2 over Z is X2 − 6X + 6 and that

h(α2) =
1
2

M(X2 − 6X + 6) =
log 6

2
.

Moreover
log α2 = log(3−

√
3).

Finally, it is easy to see that, for n > 10,

|log α1| ≤
1
p

(0.01 + |log α2|).

It follows that we can take here

log A1 =
0.13
p

+ log z,

and

log A2 =
log 6

2
.

Thus,

b′ ≤ 2p

log 6
+

1
2 log z

.

Notice also that
αn−1

1.27
< un = 2(n−1)/2zp = yp <

αn−1

1.26
.

Since
log z

log y
= 1− (n− 1) log 2

2p log y
,

it follows that

1− log 2
2 log α

<
log z

log y
< 1− log y − (log 1.27)/p

2 log α log y
log 2 < 1 +

0.09
p log y

− log 2
2 log α

,

and, for p ≥ 199 we get

1− log 2
2 log α

<
log z

log y
< 1.001− log 2

2 log α
,

and
0.6551 log y < log z < 0.6553 log y,

where indeed the first inequality is true for all n > 0 and all p.
By (3), Lemma 2.1 and Corollary 2.2, we get the relation

x2 + 2 = 3z2p,

where x := 2−(n+1)/2vn is an integer. This shows that −2 is a quadratic residue for
any prime divisor q of z. Hence, q ≡ 1 or 3 mod 8.

One may also notice that
z < (α/

√
2)2m.

Moreover, since n is prime, for any prime divisor q of z, the period of the zeros of
the recursive sequence (un)n≥0 modulo q is equal to n. Since this period is a divisor
of q ± 1, this implies

z ≥ q ≥ 2n− 1 = 4mp + 1.

It is easy to see that the two previous inequalities imply m ≥ 6 for p ≥ 209,
hence

z ≥ 24p + 1 and y ≥ 26 (24p + 1) for p ≥ 209.
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With the above corollary of [16], we get p < 19232.

But it is much more efficient to use the main theorem of [16]. We assume

p ≥ 263, then y ≥ e12.9.

In this case, we apply this theorem with the choices

L = 8, R1 = 1, S1 = 8, R2 = 19, S2 = 75,

and
m = 0.0766857, ρ = 22,

and we get a contradiction. Thus,

p ≤ 257.

In the same way, we can prove that:
• p ≤ 251 if y ≥ e20,
• p ≤ 211 if y ≥ e50,
• p ≤ 199 if y ≥ e90.

To prove a better lower bound on m (for 2 < p < 1000), we proceed as follows.
From the relation

un =
αn − βn

2
√

3
= yp = 2mpzp

(recall that n = 2mp + 1), we get

z >

(
α2

2

)m (
α

2
√

3

)1/p

,

and

z <

(
α2

2

)m (
α + (2/α2)2mp

2
√

3

)1/p

<

(
α2

2

)m (
α

2
√

3

)1/p (
1 + (2/α2)mp

)
.

Hence, ∣∣∣∣∣z −
(

α2

2

)m (
α

2
√

3

)1/p
∣∣∣∣∣ <

(
2
α2

)m(p−1)

< 10−50,

using only the fact that n > 100.
We have tested this inequality for 2 < p < 1000 and 1 ≤ m ≤ 100, with 10−50

replaced by 10−5 — using a real precision of 1000 decimal digits — and we found
no solution (after a few seconds of computation with PARI). Thus, for p > 2 we
have

m > 100,

which implies
log y > 200 (log α)− 1 > 200.

We now apply [16] with the choices

L = 8, R1 = 1, S1 = 8, R2 = 17, S2 = 992,

and
m = 0.057046, ρ = 23,

and we get
p ≤ 199.
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5. Bounds for n in terms of p

Here, we follow the same strategy as in § 9 of [7].
Our objective is to obtain bounds for n (for n odd) in terms of p for the solutions

of the equation
un = yp.

We obtain the following result, in which CK(·) is as in Lemma 9.1 from [7].

Proposition 5.1. Suppose p ≥ 11 is prime. Let θ be any root of the polynomial

(6) P (X) :=
p∑

k=0

(−2)b(p−k)/2c
(

p

k

)
Xk,

and let K = Q(θ). Let

Θ = 5 · 30p+3 p13/2 (p− 1)p+1
(
(p− 1)!

)2 (3p + 2)
(
1 + log(p(p− 1))

)
CK(10p−1pp).

If (n, y, p) satisfies the equation un = yp with n odd, then n < Mp where Mp =
1.5 p Θ log Θ.

Observe that the numerical result is very similar to Proposition 9.2 from [7], the
only changes being 5 instead of 3.9 in the definition of Θ and 1.5 instead of 2. in
that of Mp. Clearly, the present upper bound for n is only slightly smaller than
the one obtained in Proposition 9.2 from [7] in the case of the Fibonacci sequence.

In the sequel, we only point out the (small) changes with the proof of Proposition
9.2 from [7].

By (3), Lemma 2.1 and Corollary 2.2, a solution to un = yq with n odd yields a
solution in positive integers x and y to the superelliptic equation

x2 + 2 = 3y2p.

Set ω =
√
−2. Factorizing the left-hand side of the above equation over Z[ω], we

deduce the existence of rational integers a and b with a2 + 2b2 = y2 (notice that
y being odd, the same holds for a; hence, b must be even). Using the relation
3 = (1 + ω)(1− ω), we see that

(x + ω)(x− ω) = (1 + ω)(1− ω)(a + ωb)p(a− ωb)p.

We thus obtain

(7) ±2ω = (1 + ω)(a + ωb)p − (1− ω)(a− ωb)p.

Dividing by 2ω, we get

±1 =
bp/2c∑
k=0

(
p

2k

)
a2k (−2)(p−2k−1)/2 bp−2k

+
bp/2c∑
k=0

(
p

2k + 1

)
a2k+1 (−2)(p−2k−1)/2 bp−2k−1.

Consequently, (a, b) is an integer solution of the Thue equation

(8)
p∑

k=0

(−2)b(p−k)/2c
(

p

k

)
Xk Y p−k = ±1.



ON PERFECT POWERS IN LUCAS SEQUENCES 13

Remark. Our above computation works for the more general equation

x2 + D = Cy2p,

where C and D are positive rational integers, with D squarefree.

To bound the size of the solutions of (8), we follow the general scheme of [5]. Let
P (X) and θ and K be as in Proposition 5.1; we note that P (X) is the polynomial
naturally associated to the Thue equation (8). We first need information on the
number field K and its Galois closure.

Lemma 5.2. The field K = Q(θ) is totally real and its Galois closure L has degree
p(p− 1) over Q. Furthermore, for p ≥ 11, the absolute value of the discriminant of
K is bounded by 10p−1pp.

Proof. Observe that any root of the polynomial

Q(X) :=
1
2ω

·
(
(1 + ω)(X + ω)p − (1− ω)(X − ω)p

)
= XpP (1/X).

satisfies |X + ω| = |X − ω|, and so must be real. Hence, K is a totally real
field. (Observe that this argument uses only the fact that ω is purely imaginary.)
Furthermore, L(ω)/Q(ω) is a Kummer extension obtained by adjoining the p-th
roots of unity and the p-th roots of (1 + ω)/(1 − ω). Hence, this extension has
degree p(p− 1), and this is the same for L/Q.

Observe now that K(ω) is generated over Q(ω) by any root of either of the
following two monic polynomials with coefficients in Z[ω]: namely, Y p− (1+ω)(1−
ω)p−1, and Y p − (1 − ω)(1 + ω)p−1. Since the discriminant D1 (viewed as an
algebraic integer in Z[ω] and not as an ideal) of the extension K(ω)/Q(ω) divides
the discriminant of each of these polynomials, D1 divides pp3p−1(1 + ω)(p−1)(p−2)

and pp3p−1(1 − ω)(p−1)(p−2). As 1 + ω and 1 − ω are relatively prime, D1 divides
3p−1pp. Furthermore, estimating the discriminant of K(ω)/Q in two different ways
thanks to Lemma 9.7 from [7] gives

(9) |DK(ω)| = 8pD2
1 = |DK|2 · |NK/Q(DK(ω)/K)|.

Consequently, |DK| divides 3p−1(2
√

2p)p, therefore |DK| is less than 10p−1pp, since
p ≥ 11. �

The above lemma provides the same upper bound for the discriminant of the
associated number field as in the Fibonacci case. We now keep the notation from
Proposition 9.2 of [7]. We have to estimate the modified height of the quotient
(α2−α1)/(α3−α1), where α1, α2 and α3 are roots of P (X). We proceed as follows.
Let M(P ) denote the Mahler measure of P (X) and ‖P‖2 denotes its quadratic norm,
that is, if P (X) =

∑
k≥0 akXk, then ‖P‖2 =

(∑
|ak|2

)1/2. It is then well-known
that

M(P ) ≤ ‖P‖2,
(this is just Landau’s inequality from [14]; see also [21]). In the present case, we
have

‖P‖22
<

p∑
k=0

2p−k

(
p

k

)2

≤
p∑

k=0

22p−k

(
p

k

)
= 6p,

whence

M(P ) < 6p/2 and h(θ) ≤ log M(P )
p

<
1
2

log 6.
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Hence, with the modified height h′ related to the field L defined in Lemma 5.2, we
have

h′
(

α2 − α1

α3 − α1

)
≤ 5 p(p− 1).

This explains the constant 5 instead of 3.9 in the definition of Θ.
Finally, we observe that if un is a p-th power for some odd n, then there are

integers X and Y such that (X, Y ) is a solution of the Thue equation (8) and
u

2/p
n = 2(n−1)/p(X2 + 2Y 2). Since |X| ≤ 1 + 3p|Y | and un ≥ 2.5n (for n ≥ 100), we

derive, exactly as in [7], that n < 1.1 p log|Y |. It then follows that (very roughly!)

n < 1.5 p Θ log Θ,

with

Θ = 5 · 30p+3 p13/2 (p− 1)p+1 (3p + 2)
(
(p− 1)!

)2 (1 + log(p(p− 1))
)
CK(10p−1pp).

This proves Proposition 5.1.

6. Level-lowering

Recall our earlier notation α = 1 +
√

3, β = 1−
√

3. It is convenient to define

Uk =
α2k+1 − β2k+1

2k+1
√

3
, Vk =

α2k+1 + β2k+1

2k+1
, (k ≥ 0).

Note that if n = 2k + 1 then un = 2kUk. If un = yp with n = 2k + 1 odd, then we
have shown that p | k. So, we also know that

(10) Uk = y′
p
,

and therefore that

(11) V 2
k + 2 = 3y′

2p
.

Our task is to prove that k = 0, which we do in this and the next section using the
modular approach and the information obtained thus far by classical methods. In
particular we assume that 41 ≤ p ≤ 199. Our first step is to associate a putative
solution to equation (10) to the Frey curve

Ek : Y 2 = X3 + 2VkX2 − 2X.

In this, we follow the recipe given by the paper of Bennet and Skinner [3]. From
the result of Sections 2, 3 of that paper we deduce the following Lemma.

Lemma 6.1. Let E1, . . . , E8 be the elliptic curve 384A1, 384B1, . . . , 384H1 (in
Cremona’s tables [10]). Suppose (k, y, p) is a solution to equation (10). With no-
tation as above, the Galois representation on the p-torsion of Ek is isomorphic to
the Galois representation on the p-torsion of one of the elliptic curve E1, . . . , E8,
in which case, for any prime l 6= 2, 3,

(i) al(Ek) ≡ al(Ei) (mod p) if l - y.
(ii) l + 1 ≡ ±al(Ei) (mod p) if l | y.

Proof. The results of [3] show that the Galois representation on the p-torsion of Ek

arises from a newform of weight 2 and level 384. Using the computer algebra system
MAGMA we compute the newforms at level 384 and find that these are all rational
and correspond to the elliptic curves 384A1, 384B1, . . . , 384H1 in Cremona’s tables
[10]. �
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Our first task is to eliminate all of E1, . . . , E8 except for one.

Lemma 6.2. Suppose l 6= 2, 3 is a prime. The residue class of Vk modulo l depends
only on the residue class of k modulo Kl, where

(12) Kl =

{
l − 1 if l ≡ ±1 (mod 12),
l + 1 otherwise.

Proof. The condition l ≡ ±1 (mod 12) is equivalent to the condition that 3 is a
quadratic residue modulo l. If 3 is a quadratic residue modulo l, then the Lemma
follows from Fermat’s Little Theorem. Thus, suppose that 3 is a quadratic non-
residue modulo l, and write Kl = l + 1. It is sufficient to show that

α2Kl

2Kl
≡ 1 (mod l),

β2Kl

2Kl
≡ 1 (mod l).

Now the Frobenius automorphism generates the Galois group of the algebraic clo-
sure of Fl, and so αl ≡ β (mod l). Hence, since Kl = l + 1, we see that

α2Kl

2Kl
≡ α2β2

22
≡ 1 (mod l),

and similarly for β instead of α. �

6.1. Eliminating Newforms. Lemma 6.1 relates the Galois representation of Ek

to too many Galois representations. We now eliminate all but one of them.
Fix a prime 41 ≤ p ≤ 199. Suppose l 6= 2, 3 is a prime. Let Kl be given by (12).

Recall that (Lemma 6.2) the residue class of Vk modulo l, and hence the Frey curve
Ek modulo l, depends only on the residue class of k modulo Kl. We see that the
following definitions make sense: let Np(l, Ei) to be the subset of κ ∈ Z/Kl such
that

• either V 2
κ + 2 6≡ 0 (mod l), and al(Eκ) ≡ al(Ei) (mod p),

• or V 2
κ + 2 ≡ 0 (mod l) and l + 1 ≡ ±al(Ei) (mod p).

Lemma 6.3. Suppose (k, y, p) is a solution to equation (10), where 41 ≤ p ≤ 199 is
prime. Suppose that the Galois representation on the p-torsion of Ek is isomorphic
to the corresponding representation for Ei. If l 6= 2, 3 is a prime then the reduction
of k modulo Kl belongs to Np(l, Ei).

Proof. The Lemma follows from Lemma 6.1. �

Given two positive integers K1, K2, and two sets N1 ⊂ Z/K1 and N2 ⊂ Z/K2

we loosely define their ‘intersection’ N1 ∩ N2 to be the set of all elements of
Z/lcm(K1,K2) whose reduction modulo K1 and K2 is respectively in N1 and N2.

Lemma 6.4. Suppose (k, y, p) is a solution to equation (10), where 41 ≤ p ≤ 199
is prime. Let

(13) E : Y 2 = X3 −X2 − 3X + 3.

(This is the elliptic curve 384D1 in the notation of [10].) Then the Galois repre-
sentation on the p-torsion of Ek is isomorphic to the Galois representation on the
p-torsion of E.
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Proof. Suppose otherwise. We then know that the Galois representation on the
p-torsion of Ek is isomorphic to the Galois representation on Ei for some i 6= 4
(note that E4 is 384D1). Now fix a prime 41 ≤ p ≤ 199 and fix i 6= 4 and we
explain how to derive a contradiction.

Recall that k ≡ 0 (mod p). In other words, the reduction of k modulo p belongs
to the set

N ′ =
{
0 ∈ Z/p

}
.

Moreover, for any prime l 6= 2, 3, we know that the reduction of k modulo Kl

belongs to Np(l, Ei). To derive a contradiction, it is sufficient to produce a set S
of primes l 6= 2, 3, such that

N ′ ∩
⋂
l∈S

Np(l, Ei) = ∅.

We used a short pari/gp script which for each i 6= 4 and for each prime 41 ≤ p ≤
199 produces such set S. For example, to eliminate E1, p = 41, our program found
it sufficient to take

S = {5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 53, 83, 163} .

The computational part of the proof took just a few minutes. �

7. The Modular Sieve

In this section, we complete the proof that the only positive perfect powers in the
sequence un are u1 and u4. We continue with the notation of the previous section.
We have shown that if un = yp then n = 2k + 1 is odd and that 41 ≤ p ≤ 199.
Recall that our solution to un = yp with n = 2k + 1 gives a solution (k, y′, p) to
equation (10). Our task is to show that k = 0. Furthermore, Proposition 5.1 gives
a bound for the index n in terms of the exponent p, say n ≤Mp.

We continue to denote by E the elliptic curve 384D1 given by (13).

Lemma 7.1. Let 41 ≤ p ≤ 199 be prime. Let Mp be as given by Proposition 5.1.
Suppose that S is a set of primes l 6= 2, 3, and write

KS = lcml∈SKl, Np(S, E) =
⋂
l∈S

Np(l, E) ⊂ Z/KS .

Suppose that the following conditions are satisfied.
• Np(S, E) =

{
0 ∈ Z/KS

}
.

• KS > Mp.
Then the only solution to the equation un = yp is n = 1.

Proof. Since n = 2k + 1 we need to prove that k = 0. It follows from Lemmas 6.3,
6.4 that the reduction of k modulo KS belongs to Np(S, E). If the conditions are
satisfied, then KS divides k and since 0 ≤ k < n ≤Mp the Lemma follows. �

7.1. Completion of the the Proof of Theorem 1. Fix the prime exponent
41 ≤ p ≤ 199. All we need to do is to find a set S satisfying the conditions
of Lemma 7.1. For this, we wrote a pari/gp program, and we now describe the
strategy of our program taking p = 41 for concreteness. Here, Proposition 5.1
shows that

k < n ≤M41 ≈ 5.5× 10321.
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Let
K = 6983776800 = 25 × 33 × 52 × 7× 11× · · · × 19.

We start with S = {5}. We go through the set of primes l ≥ 5 in order, and we
pickout those that that satisfy Kl | K. If such a prime is found then we append
it to S and compute Np(S, E). The reader will no doubt expect that since most
of our Kl are highly composite and have lots of common factors, the set Np(S, E)
will be a small set of congruences modulo a large modulus. After a few seconds we
found that KS = K and Np(S, E) =

{
0 ∈ Z/K

}
, where S is the set of the first 48

primes l 6= 2, 3, satisfying Kl | K. Finding such a set of primes S proves that K
divides k.

We now let K ′ = K. We look for primes l such that 23 | Kl and Kl | K ′. We
append them to our set S and continue in computing Np(S, E) until we have shown
that K ′ | k, etc.

The entire computation for p = 41 took just over a minute; at the end S had
353 elements and satisfied the conditions of Lemma 7.1 with

KS = 25 × 33 × 52 × 7× 11× · · · × 769 ≈ 6.96× 10323.

The entire computation for 41 ≤ p ≤ 199 took about 9 hours on a 2.2 Mhz Intel
Pentium.

There is an important optimization, worth mentioning, that was missed in [7].
Suppose we want to computeNp(S, E)∩Np(l, E), where we have already determined
Np(S, E). Suppose also that, in some previous step, we have shown that L | k for
some integer L (here L will be some divisor of KS). To computeNp(S, E)∩Np(l, E),
we need not determineNp(l, E). We merely have to decide which elements κ ∈ Z/Kl

satisfying κ ≡ 0 (mod lcm(L,Kl)) belong to Np(l, E).

8. Discussion

In the sequel, we denote by (α, β) a given Lucas pair of complex numbers.
First, we consider the case when α and β are real. Without any loss of generality,

we assume that we have |α| > |β|. Furthermore, since

αn − βn

α− β
= ± (−α)n − (−β)n

(−α)− (−β)
,

we may further assume that β is positive. We consider the equation

(14) un :=
αn − βn

α− β
= yp,

in integers n, y, p with p prime. We observe that (n, y, p) = (1, 1, p) is a solution of
(14) for any p. Furthermore, if αβ = ±1, then either (−1, 1, p), or (−1,−1, p) is also
a solution. The existence of solutions for any p makes the complete resolution of
(14) very difficult, since one can no longer hope to solve it by only using congruences
to suitable moduli.

We now restrict our attention to solutions (n, y, p) of (14) with |y| ≥ 2. Our
first aim is to obtain a good upper bound for p. The existence of such an effective
bound is due to Pethő [23] and, independently, to Shorey and Stewart [28].

Without any further assumption, we derive that

0 6= |(α− β)ypα−n − 1| = |α/β|−n.
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Using estimates for linear forms in three logarithms, we then get an upper bound
for p, depending (of course!) on α and β.

However, we can do better in three situations, for which linear forms in two
logarithms can be applied.

A first one is (trivially) when α and β differ by 1. In this case, both are integers,
and, setting x := α = β + 1, our equation can be rewritten as

xn − (x− 1)n = yp.

Then, an immediate application of estimates for linear forms in two logarithms
yields a sharp upper bound for p.

A second one is when β = 1. In this case, α is an integer and, setting x := α,
our equation reduces to the Nagell–Ljunggren equation

(15)
xn − 1
x− 1

= yp,

for which the following alternative approach has been developed (see [4] and the
survey [6]). Rewrite (15) under the form

xn = (x− 1)yp + 1,

We then take a prime divisor ` of x, and use estimates for linear forms in two `-adic
logarithms to get an upper bound for the `-adic valuation ord`(xn) of (x−1)yp +1.
Basically, this yields the estimate ord`(xn) � (log y)(log p). On the other hand, we
have trivially

ord`(xn) ≥ n � p log y,

where, here and above, the numerical constant implied in � depends only on `.
Hence, we get an upper bound for p, which is considerably better that what can be
obtained using linear forms in three Archimedean logarithms.

A third one is described in the present Note. It is applicable, under some further
assumption, when α + β and αβ are not coprime.

Let a ≥ 1, b and t ≥ 2 be integers such that t divides no power of b and
a2t2 + 4bt is positive and not a perfect square. Consider the sequence defined by
u0 = 0, u1 = 1 and

un+2 = atun+1 + btun.

An easy induction shows that, for any positive integer m, the integers u2m and
u2m+1 are divisible by tm and that u2m+1 is congruent to bmtm modulo tm+1.
Consequently, when we consider the equation un = yp with n odd, denoting by `
the greatest integer for which t` divides y, we get that (n− 1)/2 = `p; hence, that
n is congruent to 1 modulo p. We then get an upper bound for p by using linear
forms in two logarithms, exactly as in Theorem 1.

As we have seen in Sections 2 and 3, the case of even index yields further diffi-
culties and requires a more precise analysis.

If one does not manage to get rid of linear forms in three logarithms, then the
strategy is essentially the same as developed for the Fibonacci sequence. We try to
use a sieve to prove that any solution to our equation un = yp must satisfy n ≡ ±1
(mod p). Then, with ν such that n = νp± 1, we see that

|(α− β)yp(α−ν)pα±1 − 1| = |(α±1(α− β))× (α−νy)p − 1| = |α/β|−n,
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where the use of linear forms in two logarithms gives a very good upper bound for
p.

Consequently, we can now assume that we have a reasonable upper bound for
p. Obviously, it depends on the data, but, when α + β and αβ are not too large,
we get that p is less than a few hundreds. However, much work is still needed to
achieve the resolution of the equation.

We continue the discussion by considering first, specifically, the case when β = 1,
that is, equation (15).

A remarkable result of Bennett [1] asserts that for any given positive integers a,
b and m, with a > b and m ≥ 3, the Diophantine equation

|aXm − bY m| = 1

has at most one solution in positive integers X and Y . This implies immediately
that the Nagell–Ljunggren equation (15) has no solution (n, y, p) with y ≥ 2 and
n ≡ 1 (mod p). For a fixed value of p, using an elementary sieve, it is then possible
to prove that this equation has also no solution with n 6≡ 1 (mod p) (see [6]). Note
that (15) has been solved for any value of x between −104 and 106.

We return to the quadratic case. We introduce the companion sequence of
(un)n≥0, namely the sequence (vn)n≥0 defined by

vn = αn + βn, (n ≥ 0).

We observe that both sequences are related, for every n ≥ 0, by

(α− β)2u2
n = v2

n − 4(αβ)n.

Assume first that α is a unit, that is, that αβ = ±1. With our assumptions on
α and β, we see that α and β are roots of a polynomial

X2 − tX + ε,

for some ε = ±1 and a positive integer t with t ≥ 3 if ε = 1. Then, assuming that
un is a p-th power and that ε = −1, we get the hyperelliptic equation

(16) X2 ± 4 = (t2 + 4) Y 2p.

We then proceed as in [7] to derive a Thue equation, from which we get an upper
bound for X and Y ; hence, for n. We mention that to any solution to (16) it
corresponds a solution to the equation

(t + 2i)W p − (t− 2i)Zp = ±4i,

to be solved in Gaussian integers W and Z. It has the trivial solutions (W,Z) =
(1, 1) and (−1,−1). It would be very nice to have an extension of Bennett’s above
result to the Gaussian field!

If ε = 1, we then get the hyperelliptic equation

X2 ± 4 = (t2 − 4) Y 2p = (t + 2)(t− 2) Y 2p.

If α is not a unit, then the situation is not very clear, and we see no general
method unless (αβ)n divides u2

n and v2
n.
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To conclude, we briefly discuss the case when α and β are complex conjugates.
Thus, we consider the binary recurrence

u0 = 0, u1 = 1, un+2 = aun+1 + bun,

with (a, b) 6= (1,−1) (otherwise, α and β would be roots of unity) and a2 + 4b < 0.
We can no longer use estimates for linear forms in complex logarithms in order

to bound the exponent p.
Assume that there is a prime ` such that ` divides b but does not divide a. Then,

there is an ideal l in Q(β) such that vl(β) > 0 and vl(α) = 0. Writing then

−(β/α)n = (α− β)α−nyp − 1,

we derive from known estimates for linear forms in three non-Archimedean loga-
rithms (see e.g. [32]) an upper bound for p in terms of a and b.

We may then try to prove that n must be congruent to 1 modulo p in order to
be able to apply estimates for linear forms in only two logarithms. However, there
may be some additional difficulties. Consider for instance the recurrence given by
(a, b) = (1,−2). An easy calculation shows that, starting with u0, we have the
values

0, 1, 1,−1,−3,−1, 5, 7,−3, . . .

Consequently, u2, u3 and u5 are perfect p-th powers for any odd prime number p.

9. Related equations and open problems

The equations considered in the present paper are a particular class of the ex-
ponential Diophantine equation

un = yq, in n, y, q ≥ 2 integers with |y| ≥ 2,

where (un)n≥0 is a given non-degenerated linear recurrent sequence of integers.
It is a well-known fact that, if the characteristic polynomial of the recurrence

has only simple roots and has a dominant root, then the theory of linear forms
in logarithms yields an effective upper bound for the exponent q (see, e.g. [25]).
Under the same assumption, Pethő [25] applied results from Corvaja and Zannier
[9] to get that the above equation has finitely many solutions for any fixed q ≥ 2.
Since the proof ultimately depend on the Schmidt Subspace Theorem, we have no
algorithm to compute the set of perfect powers in (un).

Take for instance the Tribonacci sequence defined by the initial terms T0 =
T1 = 0, T2 = 1 and by the recursion Tn+3 = Tn+2 + Tn+1 + Tn, for any n ≥ 0.
Since the above assumptions are clearly satisfied, we get that only finitely many
Tribonacci numbers are perfect powers. However, we still do not know whether
the only Tribonacci squares are T0 = T1 = 0, T2 = T3 = 1, T5 = 4, T10 = 81,
T16 = 3136 = 562 and T18 = 10609 = 1032.

Let define the integers T−n for n ≥ 1 in such a way that the recursion formula
holds for any integer. It is still an open question to decide whether there are only
finitely perfect powers among the integers T−n, n ≥ 1.
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