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CHAPTER 1

Introduction

These are my notes for the 2018 Algebraic Number Theory module.
They follow the lectures very closely. Thanks to Ben Windsor, Patricia
Ricamara, Emily Olsen, Luke Kershaw, and others for sending correc-
tions.

In addition to the notes you might find it helpful to consult these
textbooks:

e Steward and Tall, Algebraic Number Theory. Newer editions
have the title Algebraic Number Theory and Fermat’s Last
Theorem but old editions are more than adequate. This is
the most basic book.

e Frazer Jarvis, Algebraic Number Theory. Very accessible and
probably most useful.

e Pierre Samuel, Algebraic Theory of Numbers. This is a sophis-
ticated introduction, particularly suited if you're happy with
Commutative Algebra and Galois Theory.

e Frohlich and Taylor, Algebraic Number Theory. Too long and
thorough. If you find yourself really into the subject you might
want to dip into the chapter on fields of low degree.

e Peter Swinnerton-Dyer, A Brief Guide to Algebraic Number
Theory. Much more sophisticated and concise than the first
two references, and covers lots of advanced topics that we
won’t touch. If Algeraic Number Theory was a 4th year mod-
ule this would probably be the right textbook.






CHAPTER 2

Number Fields

1. Field Extensions and Algebraic Numbers

DEFINITION. Let K, L be fields. We say that L/K is a field extension
it K is a subfield of L.

For example C/R is a field extension, and so is R/Q.

DEFINITION. Let L/K be an extension and let a € L. We say that «
is algebraic over K if there is a non-zero polynomial ¢g(X) € K[X]
such that g(a) = 0 (that is « is the root of a non-zero polynomial with
coefficients in K).

EXAMPLE 1. i € C is algebraic over Q as it is a root of X?+1 € Q[X].
Also V/7 is algebraic over Q as it is a root of ...

LEMMA 2. Let a be algebraic over K.

(i) Then there is a unique polynomial pg o(X) € K[X]| such that
pra(a) =0 and pgo(X) is irreducible and monic. We call
Lo (X) the minimal polynomial of o over K.

(ii) If f € K[X] satisfies f(a) =0 then prqo | f-

PrOOF. Let I = {f € K[X]| : f(a) = 0}. Check that I C K[X]
satisfies the following three properties
e 0el,
o if fge lthen f+gel,
o if feland g € K[X] then gf € 1.
In other words, I is an ideal of K[X]|. As K[X] is a PID we have
I = m - K[X] (a principal ideal). As « is algebraic we see that I # 0.
So m # 0. We can scale m so that it’s monic and we let this be pix 4.
Note that (ii) holds: if f(a) =0 then f € [ = pugq - K[X] 50 i | f-
We have to show that pg, is irreducible. Suppose pxo = f - g
where deg(f) and deg(g) are smaller than deg(uk ). Then f(a)g(a) =
tr () = 0. Without loss of generality f(«) = 0, so by (ii) pika | f-
This contradicts deg(f) < deg(iik.q)-
We leave it as an excercise to check the uniqueness of jix 4. U

EXAMPLE 3. We shall write p, instead of pix o if K is understood. But

it is important to understand that the minimal polynomial depends on
the field. Let

K=0Q(W2), L=QW\2+i).

3



4 2. NUMBER FIELDS

Let & = /2 + 4. Then
Lo =X —«
since av € L. Let’s compute pg o next. Note that
(@ = V2P = -1
which we can rewrite as
(1) o? —2v2a+3=0.

Thus a is a root of X2 — 2v/2X + 3 € K[X]. This polynomial is
irreducible over K. If not then its roots belong to K; these are a =
V2+ianda =+v2—i. But K C R which gives a contradiction. Hence
o = X% —2v/2X + 3. Next, from (1)

(a2 + 3)2 = (2v20)? = 80

thus a*—2a%+9 = 0. In other words, ais aroot of X*—2X2+9 € Q[X].
You can check that this is irreducible over Q, so ug, = X* —2X%+49.

DEFINITION. Let L/K be an extension and let o € L be algebraic over
K. We define the degree of o over K to be the degree of its minimal
polynomial u, € K[X].

EXAMPLE 4. v/2 has degree 2 over Q but degree 1 over R.
By Example 3, v/2 + i has degree 4 over Q, degree 2 over Q(\@)
and degree 1 over Q(v/2,1).

DEFINITION. « € C is called an algebraic number if « is algebraic
over Q. The degree of « is the degree of pg € Q[X].

ExaMPLE 5. We will see later that the set of algebraic numbers is in
fact a subfield of C; that is if you add, subtract, multiply or divide
algebraic numbers you get algebraic numbers. For now we content
ourselves with Example 3: we know that v/2, 7 are algebraic numbers
and we found that /2 4 i is a root of X% — 2X?% + 9 € Q[X] so it is
also an algebraic number. Note that \/5, ¢t have degree 2 but V2 +i
has degree 4.

2. Field Generation

DEFINITION. Let L/K be a field extension and S a subset of L. We
define the extension of K generated by S to be the intersection of
all the subfields of L which contain both K and S; we denote this by
K(S). It S = {au,...,a,} we simply write K(ay,...,q,) instead of
K(9).

LEMMA 6. K(S) is a subfield of L. It is the smallest subfield of L
containing both K and S.

PROOF. Think about it. Here smallest means contained in all the
others. 0
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ExXaMPLE 7. If K is a field and S is a subset of K then K(5) = K,
because K contains K and S and it’s the smallest field containing both.

ExampLE 8. R(7) = C.

EXAMPLE 9. Let d € Q be a non-square (i.e. V/d is irrational). We
show that
(2) Q(Vd) ={a+bVd : a,beQ}.
Let
K ={a+bVd : a,beQ}.

First we need to show that K is field. The easiest way to do this is to
show that K is a subfield of C. We leave this as an exercise (but you
will need ‘rationalizing the denominator’ trick to show that K is closed
under taking inverses).

We see that K is a field, and that it contains Q and v/d. Let L
be another field that contains both Q and v/d. If a, b € Q, then a, b,
Vde Lsoa+bJ/de L. Hence K C L. Thus K is the smallest field
that contains both Q and v/d, showing that K = Q(+/d) as required.

We see that Q(v/d) is an extension of Q.

EXAMPLE 10. Warning: You should not assume that Q(+/d) is that
same as {a + bv/d : a,b € Q}. The set {a + bv/d : a,b € Q} is not
a field (it’s not closed under multiplication). We’ll come to Q(+/d) in
due course.

3. Algebraic and Finite Extensions

DEFINITION. Let L/K be an extension. We say that L/K is algebraic
if every o € L is algebraic over K.

ExXAMPLE 11. Let d € Q be a non-square as before. The extension
Q(V/d)/Q s algebraic as every a = a+bv/d is the root of (X —a)?—b*d €
Q[X].

Observe that if L/K is a field extension then L is a vector space
over K.

DEFINITION. We define the degree of L/K to be the dimension of L
as a K-vector space and denote this by [L : K]. We say that L/K is
finite if [L : K| < 0.

EXAMPLE 12. C has basis 1, i over R, so [C: R] = 2.

EXAMPLE 13. Q(v/d) has Q-basis 1, v/d. Therefore [Q(v/d) : Q] = 2;
in particular Q(v/d)/Q is finite.
ExXAMPLE 14. R/Q is an infinite extension. One way to check this is

to prove that any finite dimensional Q-vector space is countable, so R
must be infinite dimensional as a Q-vector space.
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THEOREM 15. Let L/K be finite. Then L/K is algebraic.

PROOF. Let [L: K] =m < oco. Let « € L. Then 1,«,...,a™ are m+1
elements in the K-vector space L, and so must be linearly dependent
over K. Le. there are ay,...,a,, € K not all zero such that

ap+ ara+ -+ apa™ = 0.

Therefore «v is a root of the non-zero polynomial ag+a; X+ - -+a,, X™ €
Q[XT. O

4. Simple Extensions

A simple extension K(«)/K is one obtained by adjoining one
element o to the field K. If « is algebraic then it is every easy to
compute the degree of K(«)/K.

THEOREM 16. Let L/K be an extension and let o € L be algebraic
over K with minimal polynomial p, € K[X]. Let n = deg(pio). Then

(i) K(o) = K[X]/(tta). More explicitly, the map
K[X]/(pa) = K(a),  W(X) + (pta) = h(e)

18 a well-defined isomorphism.
(i) K(a) has K-basis 1,a,...,a" ', In particular, [K(a) : K| =
deg(pa)-

PROOF. Define

¢« KIX]= K(a),  o(f) = fla).

It is easy to check that this is a homomorphism of rings. Let I be
the kernel of ¢. Then I = {f € K[X]| : f(a) = 0}. By the proof of
Lemma 2 we recall that [ = (u,). We claim that the ideal I is maximal.
Let’s check that. If J is another ideal containing I then J = (f(X))
for some f € K[X] (since K[X] is a PID). Thus po, € I C J so [ | -
Therefore f =1 or f = ji,. In the former case we have J = K[X] and
in the latter J = I, showing that [ is indeed maximal. Hence K[X]/I
is a field. Now the First Isomorphism Theorem tells us that there is
an isomorphism

¢ : K[X]/I — Im(¢).

Therefore Im(¢) is a subfield of K («). It contains « as ¢(X) = a and
it contains K as for an ¢ € K we have ¢(c) = ¢. But K(«) is the
smallest field containing K and « so K(«) = Im(¢). This prove (i).

Let’s prove (ii). If 8 € K(«) then there § € Im(¢) and so there
is some polynomial f € K[X] such that 8 = f(«). By the Euclidean
algorithm we have

f=qua+r, q,r € K[X], deg(r) < deg(fta)-
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Thus f = f(a) = r(a). As deg(r) < deg(ua) = m we can write
r=ag+aX+---+a,_1 X" So

B=r(a)=ay+aa+--+a, 1a""

showing that 1,...,a"! spans K(a) as a K-vector space. Next we
want to show that it is linearly idependent. Suppose there are by, by, ...,b,_1 €
K such that

b() -+ blOé + -+ bn,lanfl =0.
Then g(a) = 0 where g = by + 01 X + -+ +b, 1 X" 1. Sog €1 = (pa)-
Hence o | g As deg(g) < n —1 < deg(u,) we see that g = 0.
So by, ...,b,_1 = 0 proving linear independence. This completes the
proof. O

EXAMPLE 17. Let d € Q be a non-square. Then v/d has the minimal
polynomial ;i 5(X) = X? —d over Q. Theorem 16 now tells us that 1,

Vd is a Q-basis for Q(v/d). Thus
Q(Vd) = {a+bVd : a,beQ}.
This is a much better way of obtaining this result than Example 9.

If d € Q is a non-cube (i.e. d # ¢ for any ¢ € Q) then X3 —d is
irreducible, and is the minimal polynomial of v/d. Therefore

QUV/d) = o+ bVd+cVd : abceQ}

In fact, if « is an algebraic number of degree n, then its minimal
polynomial over Q has degree n and so 1,a,...,a" ! is a Q-basis for

Q(a), and so
Q(a) = {ag + aya+ - +a,_ 10" : a; € Q}.

5. Number Fields

DEFINITION. A number field is a finite extension of Q. The degree
of a number field K is the degree [K : Q.

ExAMPLE 18. Q is the only number field of degree 1 (why?). Thus Q
is the simplest example of a number field.

If d € Q and d is a non-square then Q(v/d) is a number field of
degree 2. In fact we know thanks to Example 17 that if « is an algebraic
number of degree n then Q(«) is a number field of degree n. We will
see later that if oy, ..., a,, are algebraic numbers then Q(ay, ..., )
is a number field. For this we will need the tower law.

COROLLARY 19. Let K be a number field. Then every element of K is
an algebraic number.

PROOF. By definition K/Q is finite, so by Theorem 15 every element
is algebraic over Q, in other words an algebraic number. U
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6. The Tower Law

THEOREM 20. Let K C L C M be field extensions of finite degree
(or we could write M/L/K ). Let {1,0s,... ¢, be a basis for L/K and
my,...,mg be a basis for M/L. Then

(3) {tem;  i=1,...,r,j=1,...,s}
is a basis for M /K. Moreover,
(4) M :K|]=[M:L]-[L:K].

PRrROOF. Observe that
[L:K]=r <o [M: L] =s< oo.

Suppose for the moment that (3) is a basis for M /K as claimed in the
statement of the theorem. Then [M : K] =rs =[M : L]-[L : K]
proving (4). Thus all we need to do is prove that (3) is indeed a basis
for M/K.

Let us show first that (3) is linearly independent over K. Thus
suppose a;; € K such that

Z Z az-j&-mj = 0.
j=1 i=1
We can rewrite this as
> (D aiti)m;.
j=1 i=1

Let b; = > a;l; for j =1,...,s. Since a;; € K C L and ¢; € L we
see that b; € L. But

ijmj =0.
j=1
As my,...,mg is a basis for M/L we have
by=by=---=0b,=0.
But
bj:Zaijﬁi:O, jzl,...,S.
i=1
As 0y,..., 0, is a basis for L/K and a;; € K we have a;; = 0 for j =
1,...,sand i =1,...,r. This proves that (3) is linearly independent.

Now we show (3) spans M as a vector space over K. Let m € M.
As my,...,mg is a basis for M/L, we can write

m =bymy + -+ bymy
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for some bq,...,bs € L. Moreover, as ¢,...,¢, is a basis for L/K
we can express each of the bs as a linear combination of the fs with
coefficients in K:

bj:aljlel‘i‘""i_arjgra j:]_,...,S;
here a;; € K. Thus

S S S T
mo=y bmy =Y (ayli+ - +ayl)m; =Y > aylm;.
j=1 j=1 j=1 i=1
We’ve shown that any m € M can be written as linear combination of
¢;m; with coefficients in K. This completes the proof. O

7. Number Field Examples

DEFINITION. A quadratic field is a number field of degree 2. A cubic
field is a number field of degree 3. A quartic field ...

LEMMA 21. Let K be a quadratic field. Then K = Q(v/d) where d is

a squarefree integer, and d # 0, 1.

PROOF. As [K : Q] = 2 we have K # Q and so there is some 6 € K\Q.
Now 1,0, 6? are linearly dependent over Q and so there are u, v, w € Q
not all zero such that

u + vl + wh* = 0.

If w =0 then 0 € Q giving a contradiction. Thus w # 0. Thus

—vj:\/z

2w
Note that A is not a square in Q, since 6 does not belong to Q. Re-
arranging we see that VA € K. Thus [Q(vA) : Q] # 1 and di-
vides [K : Q] = 2 by the tower law. Thus [K : Q(v/A)] = 1 and so
K = Q(vVA). Now write

6= A =% — duw.

a 1
where a, b are coprime integers. Let ¢ = ab which will be an integer
but a non-square. Then K = Q(y/c). Finally write ¢ = de? where d is

squarefree and # 0, 1. Then K = Q(\/a) O
EXAMPLE 22. Q(1/—1/3) = Q(v/=12) = Q(v/-3).

EXAMPLE 23. Recall that the cube roots unity are 1, ¢, ¢? where
¢ = exp(2mi/3) and their sum is zero. Thus  is a root of X? + X + 1
which is irreducible. In particular this is the minimal polynomial for
¢. Hence Q(() is a quadratic field. The proof of the lemma tells us
how to write Q(¢) = Q(V/d) where d is a squarefree integer # 0, 1.
Specifically we find that the discriminant of X? + X + 1 is A = —3.
This is already a squarefree integer, so Q(¢) = Q(v/—=3).
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DEFINITION. Let n be a positive integer and ¢, = exp(27i/n). We call
Q(¢,) the n-th cyclotomic field. Note that Q((,) is an example of a
number field (why?).

EXERCISE 24. Show that [Q((,) : Q] = p — 1. For this you will have
to revise the section on Eisenstein’s criterion in your Algebra II notes.

EXAMPLE 25. We saw that every quadratic field has the form Q(v/d)
thanks to the quadratic formula. It is not true that every cubic field
has the form Q(+/d). For example, let  be a root of X®+ X +1 (which
is irreducible over Q). Then Q(#) is a cubic field. Can you show that
Q(#) # Q(v/d) for any d? This question is a little hard right now but
we’ll come back to it later.

8. Extended Example Q(+/5,v6)

We shall evaluate [Q(v/5,v6) : Q). Write L = Q(v5), M =
Q(v/5,v6) = L(1/6). By the tower law,

M Q= [L: QM : L].

The polynomial #2—5 is monic, irreducible over Q and has v/5 as a root.
Therefore it is the minimal polynomial for v/5 over Q. By Theorem 16,
we have 1, v/5 is a Q-basis for L over Q. In particular, [L : Q] = 2.
We want to compute [M : L]. As M = L(+/6), we need a minimal
polynomial for V6 over L. Now /6 is a root of 22 — 6. We want to
know if 22 — 6 is irreducible over L = @(\/3) Suppose it isn’t. Then,
as it is quadratic, its roots must be contained in L. So v6 = a + bv/5
for some a, b € Q. Squaring both sides, and rearranging, we get

(a® + 5b* — 6) + 2abV/5 = 0.
As 1, /5 are linearly independent over Q,
a® +5b° — 6 = 2ab = 0.

Thus either a = 0, b = \/é or b =0, a = /6, in either case contra-

dicting a, b € Q. Hence v/6 ¢ L, and 2? — 6 is irreducible over L. It
follows that 22 — 6 is the minimal polynomial for V6 over L. Hence
[M : L] =2 and so by the tower law, [M : Q] =2 x 2 =4.

We can also write a Q-basis for M = Q(v/5,1/6) over Q. By the
above 1, v/5 is a basis for L over Q. Also, as 2> — 6 is the minimal
polynomial for v/6 over L, we have (Theorem 16) that 1, V6 is a basis
for L(v/6) = M over L. The tower law (Theorem 20) tells us

1, V5, V6, V30

is a basis for M over Q. Note that M is a number field: that is M is
a finite extension of Q.
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We'll go a little further with the example, and in fact show that
M = Q(v/5 + V/6) (thus M is a simple extension of Q). Let a@ =
V5 ++/6. Since a € M it follows that Q(«) C M. To show M = Q(«)
it is enough to show that Q(«) O M. For this it is enough to show

that v/5 € Q(«) and V6 € Q(«). Note that
(a=V5)* =6,

which gives

(5) o? 4+5—2v5a = 6.

Rearranging

a? -1
V5 = 5 € Q(a).

Similarly v/6 € Q(«) as required. Hence M = Q(a).

Finally, we will write down a minimal polynomial p, for a over Q.
Since M/Q has degree 4, we know from (iii) that we are looking for a
monic polynomial of degree 4. Rearranging (5) we have o®—1 = 2v/5a.
Squaring both sides and rearranging, we see that « is the root of

f=a—222% +1.
Do we have to check if f is irreducible? Normally we do, but not here.
Observe that p, | f (as f(a) = 0) and they both have degree 4. So
pa = [

9. Another Extended Example

DEFINITION. Let f € Q[z] and let aq,...,a, be the roots of f in C.
Then Q(ay, ..., q,) is called the splitting field of f.

In this example we will compute the degree of the splitting field of
f = a3 —5 over Q. The splitting field of f over Q is the field we obtain
by adjoining to Q all the roots of f. The three roots of f are

0, =V5,  0=CV5, 63 =CV5,

where ( is a primitive cube root of 1. The splitting field is therefore
Q(ela 027 03)
Let
K=Q(), L=K(6)=Q(,0), M=L(0)=Q(b,0,0;).
By the tower law
(M Q] =[K:QJL: K][M : L].

As 23 — 5 is irreducible over Q, we have [K : Q] = 3. To calculate
[L : K] we need to know the degree of the minimal polynomial of 6
over K. Note that 6, is a root of f = 2 — 5. However, f is not the
minimal polynomial of 6, over K. Indeed, as v/5 € K, we have

f=(@=V5)yg
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where g € K|[z]| is monic and quadratic. Thus 6, is a root of g. Is g
reducible over K7 As g is quadratic, if it is reducible over K it would
mean that f, € K. However, 8, = (/5 ¢ R and K = Q(+/5) C R.
Therefore 0 ¢ K, and so g is irreducible over K. It follows that g is
the minimal polynomial of 65 over K. Hence [L : K] = 2.

Finally, we want [M : L]. Now, 63 is also a root of g. As g is
quadratic and has one root in L (specifically s) its other root must be
in L. Thus 03 € L, and so M = L(03) = L, and hence [M : L] = 1.
Hence [M : Q] = 3 x 2 x 1 = 6. Note that M is a number field: that
is M is a finite extension of Q.

10. Extensions of Number Fields

LEMMA 26. Let L be a finite extension of a number field K. Then L
s also a number field.

PROOF. By the tower law [L: Q] = [L : K|[K : Q] < co. O

THEOREM 27. Let a, . . ., ay, be algebraic numbers. Then K = Q(ay, . ..
1s a number field. Coversely, any number field K can be written in the
form K = Q(ay,...,«a,) where the «; are algebraic numbers.

PRrROOF. Recall that any element of a number field is an algebraic num-
ber. The converse part of the theorem is easy: if K is a number field
and aq, ..., q, is a basis then K = Q(aq,...,a,).

Suppose oy, . . ., a, are algebraic numbers and let K = Q(aq, ..., a,).

We want to show that K is a number field. That is K is a finite ex-
tension of Q. Let
Ky=Q, K;=Ky), K=K (a),...
Then K,, = K. By the tower law
(K :Q|]=[K;: Ko| [Ky: Kq]--+[Ky: Ky_1]

So it is sufficient to show that [K;1 : K;| < co. But K41 = Ki(aig1).
So all we need, by Theorem 16, is to show that «;,; is algebraic over
K;. But a;;; is an algebraic number, so is that root of a non-zero
polynomial f € Q[X] and Q C K, so f € K;[X]|. Hence a;y; is
algebraic over K; completing the proof. U

11. The field of algebraic numbers

THEOREM 28. Let «, € C be algebraic numbers. Then a+ 3, o — (3,
a-B and o/ B are algebraic numbers (where for the last one, we suppose

B #0).

PrROOF. Consider Q(«, #). This is a number field by Theorem 27.
Every element of a number field is an algebraic number by Corollary 19.
But a+f3, a—f, a-f and a/F all belong to Q(«, /3), so they’re algebraic
numbers. U
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ExAMPLE 29. You should take a moment to consider how incredible
this theorem is. For example if « is a root of

X' 43X 4 5X% — 11X* 4 72
and [ is a root of

11111

35353535

then there is a monic polynomial with rational coefficients having o+ (3
as a root. It might be an extremely hard computational problem to
write down this polynomial (what would you guess its degree to be?)
but the theorem tells us that it exists!

X999 L 17T X —

EXERCISE 30. Let a be a non-zero algebraic number with minimal
polynomial

pa(X) = X"+ cp 1 X" 4o+ o € Q[X].
Write down the minimal polynomial for § = 1/a.
DEFINITION. We let
Q ={a €C : ais an algebraic number}.
We call Q the field of algebraic numbers.
THEOREM 31. Q is a field.
Proor. This immediate from Theorem 28. U

Warning: Q is not a number field. Why?

Note that Q is countable, but C is uncountable. This is tells us that
that there are lots of complex numbers that aren’t algebraic. Such num-
bers are called transcendental. Examples of transcendental numbers
are e and 7, though this is not easy to prove.

12. Norms and Traces

Let K be a number field and o € K. We define
Mmia @ K — K, mi.a(f) =a-0.

We usually write m, if the field K is understood. This m, is not
usually a homomorphism of fields (why?). But think of K as a Q-
vector space. Then m, is a linear transformation. If a # 0 then it is in
fact injective and surjective, and therefore an isomorphism of K with
itself as a Q-vector. We define the trace of a as

Traceg g(a) = Trace(m,) € Q
and we define the norm of « as

Normg g(a) = Det(m,) € Q.

The following lemma tells us how to compute traces and norms in
a quadratic field.
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LEMMA 32. Let d be a squarefree integer # 0, 1. Let K = Q(v/d). Let
a, b e Q. Then

Tracex/g(a + bWd) = 2a, Normg g(a + Wd) = a® — Vd.

PROOF. Let @ = a + bv/d. We want to work out the trace and the
determinant of the linear transformation m,. Recall that the trace and
determinant of a linear transformation are the trace and determinant
of its matrix with respect to any basis. We choose the basis 1, v/d for
K. Then

ma(1) =a-1+b-Vd, ma(Vd) = (a+bVd)-Vd=bd-1+a-Vd.
Thus the matrix of m, with respect to this basis is
(6) M, = (‘g bj) .
It follows that Traceg,g(o) = Trace(M,) = 2a and Normpgg(a) =
Det(M,) = a® — bd* as required. d
PROPOSITION 33. Let o, f € K. Then

Traceg g(a + ) = Tracexg(a) + Traceg q(5),

Normg g(a8) = Normg g(o) Normg ().

In other words, trace is additive and norm is multiplicative.
PROOF. Observe that mqig = mq + mg and mes = memg. The

proposition follows from the properties of traces and determinants of
linear transformations. Il

EXERCISE 34. Let f = X3 + 2X + 2. Show that f is irreducible.
Let 6 be a root of f and let K = Q(¢). Compute Traceg,q(6*) and
Normy /g(6?).

EXERCISE 35. Let d # 0, 1 be a cube-free integer. Compute the trace
and norm of a 4+ bv/d + 0\3/32 with a, b, ¢ € Q.

13. Characteristic Polynomials

DEFINITION. Let K be a number field and o € K. We write xx o €
Q[X] for the characteristic polynomial of my,. We call this the char-
acteristic polynomial of «.

ExAMPLE 36. Recall that the characteristic polynomial of a linear
transformation is the characteristic polynomial of its matrix with re-
spect to any basis. Let’s use this to work out the characteristic polyno-
mial of & = a+bv/d in Q(v/d) (where a, b € Q as usual). We computed
above the matrix M, for m, with respect to the basis 1, v/d; this is
given in (6). Thus the characteristic polynomial is

—bd

XK,a = ’X__ba gl = (X —a)? —db® = X* —2aX + (a® — db?).
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Note that xx.o(«) = 0. Is this a coincidence? No, it turns out to be
always true. Moreover it has the form X? — Trace(a)X + Norm(«). Is
this a coincidence?

THEOREM 37. Let K be a number field and o € K.
(i) deg(xxa) = [K : QJ.

(ii) Write
XKa=X"+ A1 X" 4+ ap.
Then
Trace(a) = —ay,_1, Norm(a) = (—1)"ay.

(ili) xk.a(a) =0.

PROOF. Let n = [K : Q]. Recall that x , is the characteristic polyno-
mial of m, and thus the characteristic polynomial of an n x n matrix.
This gives (i).

For part (ii) we want Trace(m,) = —a,—1 and Det(m,) = (—1)"ay.
These are standard linear algebra facts, but let’s go through them.
By definition xko(X) = Det(X1I, — M,) where M, is the matrix for
m, with respect to any basis. Now taking X = 0 we obtain ay =
Det(—M,) = (—=1)" Det(M,) = (—1)" Norm(a). Moreover if Ay, ..., \,
are the eigenvalues of m,, then

n

Xn + an_an—l + .« e . + ao f— XK,OZ(X> = H(X — )\’L>
i=1
Comparing the coefficients of X"~ we get
p_1 = —A — -+ — A, = — Trace(m,) = — Trace(a).

For the final part we apply the Cayley—Hamilton Theorem. This
tells us that xx o(ma) = 0. Thus

me + a, ml 4+ +ay=0.
Apply both sides to 1 € K and recall that m,(1) =a-1=a. So
Q"+ a1 ap =0,
This gives part (iii) of the theorem. O
LEMMA 38. Let K = Q(«) be a number field. Then Xk, = [10.a-

Proor. This is easy. Both polynomials are monic of the same degree
[Q(r) : Q]. Moreover, as xgao(®) = 0 we know that puga | Xra-
Therefore they must be equal. U

EXAMPLE 39. The lemma gives us an easy way of computing norms
and traces of @ when K = Q(«). For example let a be a root of

X3 —2X —2, which you can check is irreducible over Q. Let K = Q(a).
Then x ko = fga = X3 —2X — 2. From the coefficients,

Traceg (o) = 0, Normgg(a) = (—1)* x —2 = 2.
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LEMMA 40. Let K C L be number fields. Let « € K. Then
XLa(X) = xxa(X)FHL

In particular, if K = Q(«) then
Xr,a(X) = pga(X) .

ExaAMPLE 41. Before launching in the proof of Lemma 40 let try an
example. Take o = a + by/5 (with a, b € Q) inside L = Q(v/5, V6).
Recall that a basis for L/Q is 1, \/5, \/6, V/5v/6. Then

a-l=a-1 +b-vV5+0-v6 +0-V5V6
a-V5="5b-1+a-V5+0-V6 +0-v5V6
a-V6=0-140-vV5+a-V6 +b-vV5V6
a-V5vV6=0-1+0-V5+5b-vV6+a- V56

Thus the matrix for a with respect to this basis is

This has the form

(M 0
= (o )
where M is the matrix for m, : Q(v/5) — Q(v/5) with respect to the
basis 1, v/5. Thus
b = Deb(X Ty — M') = Det(ly — M) = X, = ((X —a)? — 587

where K = Q(v/5).

PROOF OF LEMMA 40. Let 6y,...,6, be a basis for K/Q and let M,
be the matrix for m, : K — K with respect to this basis. Let
é1, P2, - .., O be a basis for L/K. By the tower law, a basis for L/Q
is

0101, 0201, ...,0,01, O102,0209,...,0,09,...

The matrix for o with respect to this basis is

M, O O --- O
o M, 0 --- O
0 o o0 --- M,

Thus
XL.a(X) =det(X I, — M,)™ = XK’Q(X)[K;Q]'
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EXAMPLE 42. Let f = X3 + X + 1. Check that this is irreducible
(easy!). Let 6 be a root of f and let K = Q(#) so that [K : Q] = 3 and
1, 0, 6% is a basis for K/Q. Let a = 1+ 0 + 6%. We will determine the
minimal polynomial for a over Q. Note that

ma(1) =1+0+6°
ma(0) =0+ 0° +6° = —1 + ¢*
ma(0?) = —0 +6° = —1 — 20.

Thus the matrix for m, with respect to this basis is

1 -1 -1
M,=[1 0 -2
1 1 0

Thus
Xa(X) = Det(X13 — M,) = X3 — X? 44X — 3.

By Lemma 40 this equals j, or p2 depeding on whether [K : Q(a)]
has degree 1 or 3. But we can see that x, is not a cube; for example
the constant coefficient is not a cube. Therefore i, = Yo = X3 — X%+
4X — 3.

There are other ways of concluding the argument. For example if
Xa = 13 then i, must be linear and so a € Q. In this case 6 is a root
of X?+ X +1—a € Q[X] which contradicts the fact that the minimal
polynomial of 6 is cubic.

EXAMPLE 43. Theorem 37 tells us that we can read the trace and the
norm from the characteristic polynomial. Here is an example.
Let p be an odd prime and let ( = exp(27i/p). Let

XP—1

X -1

You know from Algebra II that & is irreducible (since ®(X + 1) is
Eisenstein). The roots of ®(X) are ¢,¢?,...,¢P7}, so it is the minimal
polynomial of all of them (note that these are conjugates). Let K =
Q(¢) (this is the p-th cyclotomic field), which is the splitting field for
®(X). Then [K : Q] = p— 1. As the degree of the field is equal to
the degree of the minimal polynomial of ¢,(?,...,(P~! we see that it

is also the characteristic polynomial for all of them, and we may read
off (from the coefficient of XP~2):

Tracegg(¢") = —1, i=1,2,...,p— 1.

PX)=XP 4 XP 2 41 =

From the constant coefficient we get
Normgg(¢*) = (-1)P"1-1=1, i=1,2,...,p—1.

Let’s compute Normp q(¢* —¢?). If i = j (mod p) then ¢* = ¢7 and
the desired norm is 0. Thus suppose ¢ Z j (mod p) and let k =i — j.
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Then
Normpg,o(¢" — ¢/) = Norm(¢7) Norm(¢* — 1) = Norm(¢* — 1).
Now (* is one of the roots of ®(X). Thus (¥ — 1 is one of the roots of
DX+ =X +1)P "+ (X +1)P 24 1 =XP . 4.
We don’t really care about the other coefficients, just that the polyno-
mial is monic and that the constant coefficient is p. As this is irreducible

and of degree p — 1 it is the characteristic polynomial of (¥ — 1. From
the constant coefficient we have

NOTmK/@((i - Cj) = Norm((”C —-1)= (—1)P—1p = p.
EXERCISE 44. Let K C L be number fields. Let o € K. Show that

Tracerg(a) = [L : K]-Tracegg(), Normy g(a) = NormK/Qm)[L:K].

Hint: See the proof of Lemma 40.



CHAPTER 3

Embeddings of a Number Field

1. Homomorphisms of Fields

LEMMA 45. Any homomorphism of fields o : K — L must be injective.

PrOOF. Indeed, the kernel of ¢ is an ideal of K and as K is a field its
ideals are 0 and K. But the kernel cannot be K since o(1) = 1. So
ker(o) = 0 and hence ¢ is injective. O

If o : K — L is a homomorphism of fields then we write o :
K — L. The hooked arrow is intended to allow us to think of K as
homomorphically embedded inside L.

If o : K < L is a homomorphism of fields and f = a, X" 4+ --- +
ag € K[X] then we write o(f) = o(a,) X" + -+ o(ap) € L[X]. In
other words we apply o to the coefficients of f.

EXERCISE 46. With o as above check that o : K[X] — L[X] is an

injective ring homomorphism. If ¢ : K — L is an isomorphism then
o : K[X] — L[X] is an isomorphism.

LEMMA 47. Let 0 : K — L be an isomorphism of number fields. Let
a € C be a root of f € K[X] where f is irreducible over K. Let f € C
be a root of o(f). Then there is a unique isomorphism

7: K(a) = L(B)
such that T|x = o and T(a) = f.
PROOF. Let’s show uniqueness first. Recall that every element of K («)
can be written as a linear combination ag+aja+ - - - + a,_10" ' where

a; € K, and n = deg(f). Thus
" = 7(ag) + T(a) (@) + -+ - + T(ap_1)7 ()"
= o(ag) + o(a)7(a) + - + o(ay,_1)7(a)" .
Thus 7 is determined by ¢ and 7(«) and so if it exists must be unique.

Let’s show the existence of 7. Write I = (f). By Theorem 16 we
have an isomorphism

¢: K[X]/I — K(«), d(h+1) = h(w).
Now ¢ induces an isomorphism K[X]| — L[X] which we also denote by
o. As f € K[X]isirreducible so is g = o(f) € L[X]. Write J = (g) for
the principal ideal of L[X] generated by g. We obtain an isomorphism
&1 K[X]/T — L[X]/J
19

T(ap + aa+ -+ a, 1
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which sends h + I to o(h) + J. Again by Theorem 16 we have an
isomorphism

¢ LX)/ = L(B),  ¢(h+J)=h(p).

We take 7 to be the composition of isomorphisms

K(o) 25 KIX)/T S LIx])T % L)

You can check by writing out the maps explicitly that 7| = o and
T(a) = 5. O

EXAMPLE 48. Let ¢ : Q — Q be the identity. Let d # 0, 1 be a
squarefree integer and let f = X2 —d. Then «(f) = f. Let @ = v/d and

B = —V/d. Note that Q(a) = Q(3) = Q(v/d). By Lemma 47, there is
a unique homomorphism 7 : Q(v/d) — Q(V/d) satisfying 7|g = ¢ and
7(a) = . Thus 7(a + bVd) = a — bv/d with a, b € Q.

EXERCISE 49. Let d € Q be a non-cube and let ¢ = exp(27i/3). Show
that the map
™ QVd) > Q(CVd)
given by
Ta+bYd+ eVd) = a+b(Vd + e?Vd

is an isomorphism of fields.

2. Embeddings into C

DEFINITION. Let K be a number field. An embedding of K is a
homomorphism o : K — C.

Recall that any number field K contains QQ as a subfield.

LEMMA 50. Let 0 : K < C be an embedding. Then o(a) = a for all
a € Q.

PRrROOF. Since 0(0) =0 and o(1) = 1 we have
on)=c(l+---+1)=0c(l)+---4+0(1)=n

for any natural number n. Moreover o(—n) = —o(n) = —n, so o(m) =
m for all integers m. Finally o(m/n) = o(m)/o(n) = m/n. O

ExAMPLE 51. Recall that Q is the most basic example of a number
field. By the above lemma it has precisely one embedding which is
0:Q—=C,o(a) =a.

We will see later that the number of distinct embeddings of a num-
ber field K is equal to its degree, but at least we can see that this is
true for Q.
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EXAMPLE 52. Let d be a squarefree integer # 0, 1 and let K = Q(v/d)
(which we now know as a quadratic field). Every element of K can be
uniquely written as a + bv/d where a, b € Q. If o : K < C is an
embedding then

o(a+bVd) = o(a) + o(b)o(Vd) = a + bo(Vd).

So o is really determined once we know what v/d is. But \/32 =deQ
so 0(v/d)? = o(d) = d. Hence o(v/d) = ++/d. Thus we get two possible
embeddings: oy, 09 : K < C defined by

oi(a+bVd) = a+bVd, oa(a+bVd)=a—bVd abeQ.
We say possible embeddings because we should really check that these

are homomorphisms, which isn’t hard.

LEMMA 53 (The separability lemma). Let K be a number field and
o: K < C be an embedding of K. Let f € K[X]| an irreducible
polynomial of degree d. Then o(f) has d distinct roots in C.

PROOF. Let f’ be the derivative of f which also belongs to K[X]. As f
is irreducible and f” has smaller degree than f we see that ged(f, f') =
1. As K[X] is Euclidean, there are polynomials hy and hy € K[X] such
that
(7) hi(X)F(X) + hao(X) f'(X) = L.
Write ¢ = o(f) and note that ¢’ = o(f’). Let ky = o(hy) and ky =
o(hg). Applying o to both sides of (7) gives
(8) k(X)) g(X) + k2 (X)g'(X) = 1.
If o« € Cis aroot of o(f) = g of multiplicity at least 2 then

g(X) = (X —aPm(X),  m(X) e C[X].
But then

§(X) = (X — a)m!(X) +2(X — a)m(X)
so ¢'(a) = 0. Substituting a in both sides of (8) gives 0 = 1 which is
a contradiction. g

3. The Primitive Element Theorem

THEOREM 54 (The Primitive Element Theorem). Let L/K be an ex-
tension of number fields. Then L = K(v) for some ~y € L.

Note that the theorem says that every extension of number fields is
simple. We call v a primitive element. To prove the primitive element
theorem we first need the following lemma.

LEMMA 55. Let L = K(a, B) be an extension of number fields. Then
there is some v € L such that L = K(v).
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PrOOF. Let f, g be the minimal polynomials of o and § over Q. We
know that these have distinct roots in C by the Separability Theorem.
Let aq,...,qa,, be the roots of f and let §i,..., 3, be the roots of g.
We may suppose a = a; and § = 1. Note that the equation

a,+cfj=a+cf

has exactly one solution c if j # 1. As K is infinite, we may choose
c € K such that

a; +cfj #a+cf
for all j # 1 and all i. We let v = a+ ¢f8. We will show that L = K ()
as required. For this it is enough to show that 5 € K(y) as a = v —¢f3
and c € K.

Let M = K(v) and consider pys s, the minimal polynomial of J
over M. The polynomial h = f(y — ¢X) has coefficients in M and
is a root. Thus pap | h. Moreover pps | g (as g(8) = 0). Let 5’ be
a root of ppr 3 in C. Then ' = f;. Thus h(B;) = 0so g(y —¢fB;) =0
soy —cfj = ;. Thus oy + ¢f; = v = a + ¢f. By our choice of
c we have 8’ = ; = . Therefore the only complex root of p s
is . Moreover, by the separability lemma it does not have multiple
roots. Thus pyp = X — . But pypg € M[X]so g e M = K(vy) as
required. Il

PrROOF OF THE PRIMITIVE ELEMENT THEOREM. This is now an easy
exercise using Lemma 55. U

EXERCISE 56. Let dy, dy be distinct squarefree integers # 0, 1. Show
that Q(v/dy, vdz) = Q(v/di + /d3), by following the steps of the proof

of Lemma 55.

4. Extending Embeddings

Let L/K be an extension of number fieldsand 0 : K — C, 7: L <
C be embeddings. We say that 7 extends o if 7| = 0.

THEOREM 57. Let K be a number field and M = K(a) where « is
algebraic over K. Let 0 : K — C be an embedding. Let u, be the
minimal polynomial of o over K and let aq,...,a, be the roots of
0 (pha) in C.
(i) Then there are precisely n = [M : K| embeddings of ; : M —
C (i=1,...,n) extending o.
(ii) These are specified by letting 7;(a) = .

PROOF. Let L = ¢(K). Then we can think of o as an isomorphism
oc: K — L. Let p, be the minimal polynomial of o and ay, ..., a,
be the roots of o(u,). Here n = deg(u,) = [M : K| and the roots are
distinct by the separability lemma. Lemma 47 now gives isomorphisms
7 © M — L(o;) such that 7;|x = o and 7;(«) = «a;. Moreover as
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L(o;) € C we can think of 7; as an embedding 7; : M — C. These
embeddings are distinct as the «; are distinct.

To complete the proof we must show that there no more embed-
dings. Let

a(X) =ao+a; X + -+ a, X", a; € K.
Let 7 : M — C be an extension of 0. Now p,(a) =0 so
ap + aa+ - 4+ a,a” = 0.
Apply 7 to both sides, and recall that 7(a;) = o(a;) since a; € K:
o(ag) +o(a)T(a) + -+ o(a,) ()" = 0.

Thus 7(a) is one of the roots of o(u,). In otherwords 7(«) and these
are aq, ..., a,. This completes the proof. O

EXAMPLE 58. Let K = Q(+/2). Compute the embeddings K < C.
Answer. Write § = /2. Recall that

K={a+b0+ch* : a,b,ccQ}.
If 7 : K — Cis an embedding then it extends the trivial embedding
t : Q <= C (here trivial means ¢(a) = a for all a € Q). The minimal
polynomial of § is X® — 2. The complex roots of ((X? —2) = X3 — 2
are 0, €0, (*0 where ¢ = exp(2mi/3). Thus the embeddings 7; : K — C
satisfy 71(0) = 0, 79(0) = €0 and 73(0) = (3. Thus

mi(a + b0 + ch*) = a + b + cH?
To(a + bl + cf?) = a + bCO + c(*6?

m3(a + b0 + ch?) = a + bC%0 + cCH>.

EXERCISE 59. Let o : Q(v/5) — C be given by o(a+ bv/5) = a — b/5.
Explicitly write down the embeddings 7 : (@(\/3, \/6) — C that extend

g.

THEOREM 60. A number field K has [K : Q] embeddings.

Proor. This follows from Theorem 57 and the Primitive Element The-
orem. O

5. Real and Complex Embeddings; Signature

It is easy to check that if ¢ : K < C is an embedding then &

defined by
g: K < C, o(a) =o(a)

is also an embedding. Note that @ = ¢ if and only if o(K) C R in which
case we say o is a real embedding. Otherwise if 0(K) ¢ R we say
that o is a complex embedding; in this case @ # . We usually talk of
pairs of complex embeddings, since the complex embeddings come
in conjugate pairs.
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THEOREM 61. Let K be a number field. Let o4,...,0, be its real em-

beddings. Let 0,4 1,...,0,15,0m41,---,0.15 be its complex embeddings.
Then [K : Q] =r + 2s.

Proor. This follows from Theorem 60. O

We refer to the pair of non-negative integers (r, s) as the signature
of K.

EXERCISE 62. Let K = Q(«) be a number field and let p, be the
minimal polynomial of . Let (7, s) be the signature of K. Show that

(i) 7 is the number of real roots of 1.
(i) s is the number of pairs of complex conjugate (non-real) roots

of fiq.
(iii) What is the signature of Q(v/d)?
(iv) What is the signature of Q(+/d)?

EXAMPLE 63. Let K = Q(v/1++/2). We will determine the degree

and signature of K. Write
a=1\/1+ V2.

?—1=12

Then

SO
(> —1)>=2=0.
Thus « is a root of
f=(X*-1)P2-2=X*-2X%-1.
You can check that is irreducible directly and so [K : Q] = 4. We'll
adopt a slightly less ‘brute force’ approach. We know that [K : Q] < 4

since « is a root of f. We also know that Q(v/2) € K. Thus by the
tower law 2 | [K : Q] and so [K : Q] = 2 or 4. If [K : Q] = 2 then

[K : Q(v/2)] =1 and so K = Q(+/2). In particular o € Q(v/2). Now
o? = 1+ /2. Taking norms we have

Normg(yz)g(@)” = Normg )1 + v2) = —1

giving a contradiction. Thus [K : Q] = 4 and so f is irreducible. In
particular, it is the minimal polynomial of a. Let § be any root of f.
Then

(8 =1 =

and so the four complex roots of f are

041:\/1+\/§, 042:—\/1+\/§, agz\/l—\/ﬁ, 044:—\/1—\/5.

The four embeddings 7; : K — C satisfy 7;(a) = ;. As oy, ay are
real, we have that 7y, 7 are real embeddings. Moreover as, a4 are
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non-real but complex conjugates, so 73, 74 are a single pair of complex
embeddings. In particular, the signature of K is (2,1).

6. Conjugates

DEFINITION. Let a € Q. The conjugates of a are the roots of its

minimal polynomial pg, (i.e. the minimal polynomial of « over Q) in
C.

By Theorem 57, the conjugates of v are o;(«) where the o; are the
embeddings of Q(«).

THEOREM 64. Let K be a number field of degree n. Let oy, ..., 0, be the
embeddings K — C. Let o € K. Then the characteristic polynomial
Xa has the form

) xal(X) = [J(X = i)

Moreover,

Tracex (o) = Zai(a), Normpg g(a) = Hai(a)
i=1 1=1

PRrROOF. By the Primitive Element Theorem we know that K = Q(/5)
for some 8 € K. In this case we know that xg = gz by Lemma 38.
Now by Theorem 57 the roots of pg g are o1(8),...,0,(8) (and these
are distinct by the separability Lemma). Hence
Xp(X) = ngs(X) = [[(X = i)
i=1

By definition, x5(X) is the characteristic polynomial of mg. Let Mz be
the matrix for mg with respect to the basis 1,...,3""!. As the roots
of the characteristic polynomial (i.e. the eigenvalues) are distinct, M
is diagonalizable. Thus there is a n X n invertible matrix 7" so that

T'MsT =D, D =diag(o1(8),...,0a(8))

Here the notation means that D is the diagonal matrix with o;(/5) down
the diagonal.

Now o € K so we can write o = ¢y +c1 8+ --+c,_1 871, It follows
that

My = ol + Mg + -+ + cpd MG
Observe that D/ = (T MzT)! = T-'M}T. Thus
TﬁlMaT = C()[n + ClD + -+ Cnlenil.

This is diagonal matrix with the i-th diagonal entry being
Co—f—ClO'i(ﬂ)—FCQO'i(ﬁ)Q—F' : '+Cn_10'i<6)n_1 = O'i(C()—i‘ClB—i" : ’+Cn_16n_1) = O'i(Oé).
Thus X4, which is the characteristic polynomial of M, is [[(X —o;(a)).
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Finally we want to compute Tracex/g(a) and Normg g(a). These
are defined respectively as the trace and determinant of m,, or equiv-
alently the trace and determinant of any matrix for m,. We found
above the matrix M, is diagonalizable with o;(«) down the diagonal.
This proves the formulae for the trace and norm. O

EXAMPLE 65. Let K = Q(v/2). Let’s compute the trace and norm of
a =1+ v/2. One way of doing this is writing down a matrix for ma.
But we can also do this using the embeddings. We know that K has
three embeddings that satisfy

1(V2) = V2, 3(V2)=¢V2,  o3(V2) = (V2
where ¢ = exp(2mi/3). Then
Traceg/g(a) = o1(a) + o2() + o3()
= (14+V2)+ (1+¢V2) + (1+ V2)
=3
since 1 + ¢ + ¢? = 0. Moreover, the norm is
Normyg(a) = (1+ V2)(1+ (V2)(1 + ¢*V?2).

After expanding the brackets and simplifying we find that Norm g g(a) =
3.

EXAMPLE 66. Let K = Q(\/a) where as usual d # 0, 1 is squarefree.
Let o = a + bv/d where a, b € Q. We know the two embeddings of K
satisfy

o (a) = a+ bVd, o) = a — bWd;
These are the conjugates of a. So the characteristic polynomial of « is
Xa(X) = (X — (a+bVA))(X = (a — bWd)) = X? — 2aX + (a® — b2d)

which clearly belongs to Q[X]. If b =0 then a = a € Q and x,(X) =
X?—2aX +a® = (X —a)? is the square of the minimal polynomial. If
b # 0 then a ¢ Q and so x4 is equal to the minimal polynomial.

7. Discriminants

Let K be a number field of degree n and let wy, ..., w, be elements
of K. Welet oq,...,0, : K < C be the embeddings of K into C.
Consider the matrix

al(wl) 02(w1) cee an(wl)
(10) o1(we) o9(wa) -+ op(we)
o1(wn) o2(wy) 0 on(wn)

Which we denote by the short-hand (o;(w;)). We let D(wy, ..., w,) be
the determinant of this matrix, and we call this the determinant of
Wi, .. .,wn. Note that the order of o4, ..., 0, is not uniquely determined



7. DISCRIMINANTS 27

by K. If we permute the embeddings then we simply permute the
columns of the matrix and so change D(wy, ...,w,) by multiplying by
+1 depending on the sign of the permutation. So it is perhaps better
to square D. We let

Alwy, ..., wy) = D(wi,...,wp)?

and we call this the discriminant of {w;,...,w,}. We shall normally
consider only discriminants of bases. The discriminant measures the
‘size’ of a basis is in a precise sense that we will see eventually.

EXAMPLE 67. Let d be a squarefree integer. Then 1, v/d is a basis for
Q(v/d). Then

D(1,V/d) = ‘\}E _1@‘ = —2V/d,

and so
A(1,Vd) = 4d.
If instead we take the basis 1, (1 + +/d)/2 then
1 1
D(1, (1+VD/2) = | 1rvs 1ova| = —Vd
2 2
and so

A (1, (1+ J&)/z) —d.

EXAMPLE 68. Let d be cubefree and K = Q(+v/d). The minimal poly-
nomial of # = v/d is X® — d which has roots 0, 6 and (26 where
¢ = exp(27i/3). Thus the embeddings of o; : K — C satisfy
01(0> = 97 02(9) = C07 03(8) = CZG
It follows that the determinant of 1, 8, 62 is
o1(1)  oa(1)  o3(1)
D(1,0,0%) = | o1(0)  02(0)  03(0)
01(92) 02(02) 03(92)

1 1 1
=16 O (20
92 C292 C92
1 1 1
=0-6-11 ¢ (2
L ¢ ¢

=3d-(¢* = () =-3V-3-d
where we have used ¢ = (—1 ++/=3)/2, ¢* = (-1 — v/=3)/2. Thus
AL, Vd, V) = —27d2.
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EXERCISE 69. For the brave only. We’ll see easier ways of doing
this calculation. Let p be an odd prime and { = exp(27i/3). Let
K = Q(¢) and recall that [K : Q] = p — 1. Compute A(1,¢,...,(P72).

8. The Discriminant and Traces

THEOREM 70. Let K be a number field of degree n and let wy, ..., w, €
K. Then

A(wi, ..., wy) = Det(Tracek g(w; - wj)).
In particular, A(wy, ... ,w,) € Q.
PRrROOF. Write T for the n x n matrix with (z, j)-th entry o;(w;). Then
D(wy,...,w,) = Det(T) and so

Awy, ..., w,) = Det(T)? = Det(T - T")

where T" = (0;(w;)) is the transpose of 7. Then (4, j)-th entry of T'- T*
1s

Z ox(w;)ok(wj) = Z op(w; - wj) = Tracek g(w; - w;)
k=1 k=1

as required. Here we have used Theorem 64.
For the last part recall that Traceg g maps elements of K to Q. [

ExAMPLE 71. Part I. In Example 68 we computed A(1,/d, \3/32)
directly from the definition. We can now do this again, and more
easily, using Theorem 70. You'll find

30 0
ALYA Y =10 0 3d| = —27d.
0 3d 0
Part TL. Let f = X3+ X2 — 2X + 8.

(i) Show that f is irreducible over Q.
(ii) Let 6 be aroot of f and K = Q(#). Compute the discriminant

A(1,6,067).

Answer:

(i). Suppose f is reducible in Q[X]. As f € Z[X] is monic we know
by Gauss’ Lemma, f = GH where G, H € Z[X] are monic of degree
< deg(f) = 3. So one of the two factors must have degree one. Thus
without loss of generality G = X — o with o € Z. Clearly « | 8. Thus
« must be one of &1, +2, +4, 8. We check these and find that none
are roots. Thus f is irreducible.

(ii). We need to compute

Trace(1) Trace(fd) Trace(6?)
(11) A(1,6,60%) = | Trace(f) Trace(6?) Trace(6®)
Trace(f?) Trace(6?) Trace(6%).
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We know Trace(1) = 3 and from the minimal polynomial for f for 6
(which is the same as the characteristic polynomial in this case)

Trace(f) = —1.
Note that
62 = —6% + 20 — 8, 6* = —6° + 20% — 84.

As the traces are additive, we know how to compute Trace(6?) and
Trace(6*) as soon as we’ve worked out Trace(#?).

It’s most straightforward to write down the matrix My for my with
respect to the basis 1,60, 6%. This is

00 —8
My=|1 0 2
01 —1
Thus
0 -8 -8
Mgp =M; =0 2 -10
1 -1 3

Thus Trace(6?) = Trace(My2) = 5. Hence
Trace(f®) = —5 — 2 — 24 = —31, Trace(f") = 31 + 10 + 8 = 49.
Substituting into (11) we get
A(1,6,0%) = —2012 = 2% x 503.

EXERCISE 72. Suppose f = X3+ bX + ¢ € Q[X] is irreducible and let
0 be a root. Let K = Q(0). Show that

A(1,0,0%) = —4b® — 27c2.

9. Discriminants and Bases
LEMMA 73. If wy,...,w, are Q-linearly dependent then
D(wy,...,wn) = Awy, ... ,w,) = 0.

PROOF. Suppose ajw; + - - - + a,w, = 0 where a; € Q are not all 0. As
the o; are Q-linear, we have

0=o0j(aiwr + -+ apwy) = a10j(w1) + - - - + a0 (wy).

If vq,...,v, are the rows of (10) then a;vy + -+ + a,v,, = 0. As the
rows are linearly dependent the determinant is 0. U

In fact the converse if true, and so wy, ...,w, is a basis for K/Q if
and only if A(wy,...,w,) # 0. We prove this shortly.
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LEMMA 74. Let ¢;; € Q and let

n
Bi= cijw;.
j=1

Then
D(ﬁl) e 76”) = det(Ci’j)D(UJb Ce ,Wn),
and

A(ﬁl, PN aﬁn) = det(cm-)Q : A(wl, PN ,wn).

PrOOF. Recall that the embeddings o, are QQ-linear maps. Thus
or(Bi) = ZCi,jUk(wj)-
j=1

Hence the matrix (o (8;)) is obtained by multiplying the matrix (o (w;))
by the matrix (¢; ;). The lemma follows by taking determinants. O

THEOREM 75. Let K is a number field of degree n. Then
(i) Write K = Q(«). The discriminant of the basis 1,a,...,a" !

18 given by
All,a,...,a" 1) = H (o — aj)?.
1<i<j<n
where aq, . .., ay are the conjugates of .

(ii) Let p1,...,Bn € K. Then py,...,[B, is a Q-basis if and only

PROOF. Recall that the conjugates of o are given by o;(«) = «;. These
are distinct as they are the roots of the minimal polynomial of . Now
oj(a’) = a} and so

1 1 1
o] Qg a
D(l,a,...,a" 1) = .
n—1 n—I1 : n—1
o o N

This is a Vandermonde determinant and we know that

D(l,a,...,a" 1) = H (0 — o).

1<i<j<n

Squaring gives (i). Observe as the a; are distinct (by the Separability
Theorem), we have A(1,«,...,a" 1) # 0.

Now let By,...,06, € K. If B1,..., 3, is not a basis then the dis-
criminant is zero by Lemma 73. Suppose 1, ..., 3, is a basis. By the
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Primitive Element Theorem we can write K = Q(«) for some o € K.
As 1,...,a" ! is also a basis (for K/Q) there are ¢; ; such that

n
_ Z j—1
Bi = cijod
j=1

where det(c; ;) # 0. By Lemma 74 we have
A(Bl; PN ,ﬂn) = Det(cm)Q : A(l, ce ,Oén_l).
Part (ii) follows from (i). O

EXERCISE 76. Let’s do Exercise 69 but somewhat more easily. For
this you need to revise Example 43. Recall that p is an odd prime and
¢ = exp(27mi/p). The conjugates of  are

<12C7 <2:g27 C3:<37'”7 Cp—1:Cp_1-
(i) Show that

AL )= [ @=-¢r=En2 I G-

I<i<j<p—-1 1<i,j<p—1,
Gl
(ii) Recall that the ¢; all share the same minimal polynomial
p—1
O(X)= X" XP 2 1= [[(X = G)
i=1

With the help of the product rule show that

o) =[] G-

1<j<p—1,
JFi
and thus
p—1
[ —¢) =[] (G) = Normy,o(¥'(¢))
i#] i=1

(iii) By differentiating the identity
(X —1)P(X)=X"-1

show that ®'({) = p¢P~1/(¢ —1).
(iv) Deduce that

AL, ¢, ..., ¢772) = (=1)PD2pp=2,






CHAPTER 4

Algebraic Integers

1. Definitions

Recall that Q is the set of algebraic numbers. We call & € Q an
algebraic integer if is the root of a monic polynomial f € Z[X]. We
write O for the set of algebraic integers.

If you're doing Commutative Algebra you’ll recognize O as the in-
tegral closure of Z inside Q.

EXAMPLE 77. ¢ is a root of the polynomial X2+ 1 which is in Z[X] so
i is an algebraic integer. A more subtle example is (1 + v/5)/2 which
is known as the golden ratio. This does not at first look integral, but
it has minimal polynomial X? — X — 1 € Z[X] and so is an algebraic
integer.

What about 1/1/2? This has minimal polynomial X2 —1/2 ¢ Z[X].
However the definition does not immediately allow us to conclude
that 1/4/2 is not an algebraic number, because we need to show that

f(1/4/2) # 0 for all monic f € Z[X].

To answer the question in the above example we need some Algebra
IT revision.

LEMMA 78 (Gauss’ Lemma). Let f € Z[X] be a monic polynomial. Let
g, h € Q[X] satisfy f = gh. Then there is a non-zero rational number
A such that G = \g and H = X\™'h are monic polynomials belonging to
Z[X] and f = GH.

PRrROOF. Write f = gh where h € Q[X]. There are non-zero rationals
A, € such that G = \g € Z[X|, H = ¢h € Z|X]. Then (\e)f = GH €
Z[X]. Comparing the leading coefficients we see that A\e =n € Z. By
changing the sign of A we may suppose n > 1. Choose A, € so that n
is as small as possible. We claim that n = 1. Suppose otherwise and
let p | n be a prime. Now reduce the relation

nf(X) = G(X)H(X)

modulo p letting G € F,[X], H € F,[X] be the polynomials we obtain
from reducing the coefficients of G, H modulo p. As f(X) € Z[X] and
p | n we have
G(X)-H(X)=0.
But F,[X] is an integral domain, so without loss of generality G(X) =
0. Hence p divides all the coefficients of G(X). In otherwords (A/p)g(X) €

33
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Z[X]. This contradicts the minimality of n = Ae, proving our claim
that n = 1. The theorem now follows as € = n/\ = A71, U

A consequence of the above is the following theorem which we also
call Gauss’ Lemma.

THEOREM 79 (Gauss’ Lemma). Let o be an algebraic number. Then
a is an algebraic integer if and only if pg.o € Z[X].

ProoOF. The “if” part follows from the definition of algebraic integer.
Let’s prove the “only if” part. Suppose « is a root of a monic polyno-
mial f € Z[X]. Now pg. | f in Q[X]. By Gauss’s lemma there is a
non-zero rational A such that X - ug, is monic and has coefficients in
Z. But g, is already monic. Hence A = 1 completing the proof. [

EXAMPLE 80. We can now answer the question of whether 1/ V2 is an
algebraic integer. This has minimal polynomial X% — 1/2 ¢ Z[X] so
1/4/2 is an algebraic number but not an algebraic integer.

COROLLARY 81. « is an algebraic integer if and only if all its conju-
gates are algebraic integers.

PRrROOF. By definition, conjugates share the same minimal polynomial.

O
COROLLARY 82. Let K be a number field and let « € K. Then « is
an algebraic integer if and only if one of the following is true

(i) « is a root of a monic polynomial f € Z[X];
(11) HQ,a € Z[X]7
(iii) the characterisitc polynomial of v belongs to Z[X].

PROOF. (i) is the definition of algebraic integer. We know already that
(i), (ii) are equivalent. Note that (iii) implies (i) since the characteristic
polynomial is monic and « is a root of it. Moreover (ii) implies (iii) as
the characteristic polynomial is a power of the minimal polynomial. [J

DEFINITION. If K is a number field the we write
Or=KnOoO.

We call O the ring of integers of K. Of course calling it that does
not automatically make it into a ring; we still need to prove that it is
a ring.

THEOREM 83. Og = Z.
It is for this reason that we call Z the set of rational integers.

Proor. If a € Q then the minimal polynomial of a is X — . This
belongs to Z[X] if and only if a € Z. Thus QN O = Z as required. O
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We immediately see that Z C Ok for any number field K.

It is natural to ask if every algebraic number is the ratio of two
algebraic integers. In fact, more is true. Every algebraic number o can
be write as 8/m where [ is an algebraic integer and m is a rational
integer.

PROPOSITION 84. Let K be a number field and let o € K. Then there
s a rational integer m > 1 such that ma € O.

PROOF. Let
pa(X)=co+ar X+ +cp X"+ X" € Q[X].

Let m be the least common multiple of the denominators of the c;.
Note that

mnua(X/m) e mnco + mn—lcl + ... + mcn_an—l + Xn

is both monic and coefficients in Z. Moreover, = ma is a root of
this. Thus € O. But also f € K asm, a € K so € Ok. O

2. Ring of Integers

We will prove in this section that O and Ok are rings. To make sure
you understand this section start out by doing the following exercise.

EXERCISE 85. Consider the ring R = Z[1/2] = {f(1/2) : [ € Z[X]}.
This is an additive abelian group (by just forgetting the multiplicative
structure of R and concentrating on the additive structure). Show that
R is not finitely generated as an additive abelian group. You might
find the fundamental theorem of abelian groups helpful.

LEMMA 86. Let f, g € Z[X] and suppose that g is monic. Then there
are unique q, r such that

(12) f=qg9+r, q,r € Z[X], deg(r) < deg(g).

PROOF. You might be thinking “Of course I know this! It’s Euclid!”.
However Euclid gives you ¢, » € Q[X]. The claim here is that the
unique ¢, r that Euclid gives you actually belong to Z[X] provided f,
g € Z[X] and g is monic.

Fix monic g € Z[X]. We prove the existence of ¢, r € Z[X] satisfy-
ing (12) by induction on the degree of f. If deg(f) < deg(g) then ¢ =0
and r = f so the claim is true. Now write deg(g) = n and suppose
deg(f) > deg(g) so we can write deg(f) = n + m where m > 0. Then
f and g start with (recall g is monic)

=G X g = X

where all the coefficients are in Z. Let fi = f — 4,1, X™ - g. Then
f1 € Z|X] and deg(f1) < deg(f). By the inductive hypothesis

fi=aqg+r, ¢, € Z[X], deg(r1) < deg(g).
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Let ¢ = ¢1 + apimX™ and r = r1. Then ¢, r € Z[X]| and satisfy
(12). O

LEMMA 87. Let a be an algebraic integer of degree d. Then for all j > 0
the power o can be written as Z-linear combination of 1,a, ..., a4 L.

PROOF. Let f = X7 and let ¢ = pgo(X). These belong to Z[X] and
¢ is monic. Thus

X =q-pga+r, q,r € Z[X], deg(r) < d
Thus r = ag+ a; X + -+ - + ag_1 X% ! with a; € Z. Hence
o = g(a) - pla) +r(a) = ag+ ara+ - +ag1a”

If « is an algebraic number, we write
Zlo] = {f(0) : f € ZIX]}.
If aq,...,«, are algebraic numbers, we write
Lo, . ..o = floag,...,an) + fE€ZLX, ..., X0}
It is easy to see that this is a subring of C.

LEMMA 88. If ay,...,q, are algebraic integers then Zla, . .., ay] is
finitely generated as an additive abelian group.

PROOF. Every element of Z[a, ..., a,] can be written as an Z-linear
combination of expressions of the form q{l ---adn. Let d; be the degree
of a;. By Lemma 87 we know that a7’ can be written as a Z-linear

combination of 1, y, . .., a5 ™. Thus every element of Z[a, . . ., ay,] can
be written as a Z-linear combination of o' - - - of» with j; < d;—1. This
shows that Z[aq,...,a,] is finitely generated as an additive abelian
group. U

LEMMA 89 (Integral Stability Lemma). Let H be a non-trivial finitely
generated additive subgroup of C. Let 0 € C and suppose that 0H C H.
Then 0 is an algebraic integer.

PrOOF. As H is finitely generated as an abelian group, there are
Wi, ...,w, € H that span H; i.e.

H = 7Zwi + Zwy + - - - + Zuw,.
Now 6w; € 0H C H. Thus we may write

n
Qwi: E Qi jWj
=1

where a;; € Z. Let A be the matrix (a;;). Let w be the column
vector with entries wq,...,w,. Then Aw = 6w. In otherwords € is an
eigenvalue of A and hence a root of y4(X) = det(XI — A). However,
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Xa(X) is a monic polynomial with integer coefficients, and thus € is an
algebraic integer. U

THEOREM 90. O is a ring.

PROOF. We want to show that O is a subring of C (or a subring of
Q). We know 0, 1 € O. Thus it is enough to show that O is closed
under addition, negation and multiplication. Let o, 5 € O; i.e. « and
[ are algebraic integers. By Lemma 88 we know that the ring Z, (]
is finitely generated as an additive abelian group. Let + be any of
a+f, —a and a — . As Z|a, 8] is a ring we have vZ[«, 5] C Zlao, S].
Applying the Integral Stability Lemma shows that v € O. O

We can now justify calling O the ring of integers of K.
COROLLARY 91. Let K be a number field. Then Ok is a ring.

PRrROOF. By definition Ox = O N K so as the intersection of two sub-
rings of C it is a subring. O

EXERCISE 92. Let K be a number field and o € K.

(i) Show that if o € Ok then Traceg/g(o) and Normg g(c) are
in Z.
(ii) If K is quadratic prove the converse of (i).
(iii) Give a counterexample to show that (i) does not hold for cubic
polynomials.

EXAMPLE 93. Let’s work out O for K = Q(i). Let @ € Ok. Then
a = a+ bt where a, b € Q. Let u, v € Z be the integer parts of a, b so
that

a=1u-+e, b=v+n, 0<e<, 0<n<l1.

Then a = (u + vi) + (¢ + ni). But as Ok is a ring containing Z and i
we have u+vi € Og. Hence e +1i € Og. Now Traceg g(e +ni) = 2.
Thus 2¢ € Z. Hence ¢ =0 or 1/2. Also as i € O we have i(e +ni) =
—n + e € Ok, so by taking traces we have 2n € Z and so n = 0 or
1/2. Now we write down the characteristic polynomials for the four
possibilities

e+ni=0, 1/2, i/2, (14142

We find that only 0 is an algebraic integer. Thus a« = u + vi with w,
v € Z. Hence

Zi| ={a+bi:a,b e Z}.

EXERCISE 94. Use the strategy of the above example to compute Og
for

(i) K
K

QV5).
(i) Q

(V10).
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(i) should be easy, but the answer might surprise you. (ii) is quite hard
so don’t waste too much time on it. It will be easier once we know
more about rings of integers and their integral bases.

3. Integral Basis

We saw that if K is a number field then Ok is a ring. If we forget
about the multiplicative structure of O and simply look at the addi-
tive structure then we will see that Ok is an additive abelian group.
Let’s write O} for Ok viewed purely as an additive abelian group.

EXAMPLE 95. From Example 93 we see that every element of Z[i]"
can be written uniquely as a -1+ b -4. Thus

Zit =72 107 i =272

Note that the isomorphism Z[i|* = Z? is an isomorphism of abelian
groups and not of rings. We call 1, ¢ an integral basis for Z[i]; that is
a basis for O} as an abelian group.

DEFINITION. An integral basis for a number field K is a set of el-
ements &i,...,&, € Ok which are a Z-basis for Og; that is every
element of Ok can be written uniquely in the form m& + - - - +m,&,
with m; € Z. In other words,

OF=7-6807 -6 - DL-&,.

Just because we defined what an integral basis is, doesn’t mean
that it necessarily exists. We still have to do that. But for quadratic
fields that isn’t hard. We can even compute an integral basis which we
do in the next section.

We need to do some Algebra I revision.

THEOREM 96 (The Fundamental Theorem of Finitely Generated Abelian
Groups). Let G be a finitely generated additive abelian group. Then
there is an integer r > 0 (called the rank) and positive integers dy |
dy | ds--- | dy such that

GE2ZL OL/LWLZDL)/AL D - L] di L.

For now we will be interested only in torsion-free abelian group.
An element a € G is torsion if it has finite order. We say G is torsion-
free if the only element of finite order is 0.

ExaMpPLE 97. C is an additive abelian group if we forget about the
multiplicative structure. Let G be a subgroup of C. If a € G has finite
order, then na = 0 for some n > 1, and so a = 0 (as we are inside C).
Thus G is torsion-free.

Note that torsion-free means that G does not have any Z/dZ inside
it. As a corollary to the fundamental theorem we have.
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COROLLARY 98. Let G be a finitely generated torsion-free additive

abelian group. Then there is an integer r called the rank such that
G=7".

LEMMA 99. Let K be a number field. If OF is finitely generated then
it has an integral basis.

PROOF. We know that O} is torion-free (as it is a subgroup of C).

Suppose that it is finitely generated. Then O} = Z" for some n.

Let ¢ : Of — Z" be an isomorphism, and let ¢~'(e;) = w; where
e1,...,e, are the standard basis vectors. Then
O}:Z.wl@...@z.wn_

O

LEMMA 100. Let K be a number field of degree n. Let H be a finitely
generated subgroup of O of rank m. Then m < n.

ProoOF. Let wy,...,w, be a Z-basis for H and suppose m > n. Now
K has dimension n as a QQ-vector space so wq,...,w,, are linearly de-
pendent over Q. So there are a; € Q, not all zero, such that

awy + -+ -+ apw, = 0.

Multiplying by the lem of the denominators of the a; we may suppose
a; € 7 and not all 0. This contradicts the assumption that wy,...,w,
is a Z-basis for H. O

EXAMPLE 101. Let K = Q(4). Then O} has rank 2. It has many
subgroups of rank 1; for example Z or Z - i or Z - (1 +4). It also
has many subgroups that are of rank 2 but are smaller than O}; for

example
Z-20Z-i={2a+bi : a,beZ}.
Note that this subgroup has rank 2 and has index 2 in O.

4. Integers of Quadratic Fields

LEMMA 102. Let d be a squarefree integer. Let i a non-zero rational
number such that y*>d € Z. Then p € Z.

PROOF. Write p1 = a/b where a, b are coprime integers and b > 1.
Then a*d/b? € Z. As a, b are coprime, b? | d and so b = 1 by the
squarefreeness of d. O

LEMMA 103. Let d # 0, 1 be a squarefree integer. The (1 4+ /d)/2 is
an algebraic integer if and only if d =1 (mod 4).

PROOF. The minimal polynomial for (1 + v/d)/2 is

(X—1/2)2—d/4:X2—X+%l.

This belongs to Z[X] if and only if d =1 (mod 4). O
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LEMMA 104. Let d be squarefree, # 0, 1. Let K = Q(V/d).
(i) If d # 1 (mod 4) then 1, Vd is an integral basis for Ok.
Therefore Ox = Z[\/d.
(i) If d = 1 (mod 4) then 1, (1 ++/d)/2 is an integral basis for
Ok. Therefore Ok = Z[(1 + v/d)/2).

PROOF. Note that 1, V/d € Of. Thus u+ vvd € O for all u, v € Z.
We need to discover if Ok contains algebraic integers not of this form.

Suppose a € Okg. Then o € K = Q(a) and so a = a + b/d
where a, b € Q. The characteristic polynomial of o (which is a power
of the minimal polynomial) is X? — 2aX + (a* — bd?). Thus 2a € Z
and a® — bd* € Z. Moreover (2b)?d = (2a)*> — 4(a® — bd?) € Z. By
Lemma 102 we have 2b € Z. Thus

a=(u+uvvd) +7

where u, v € Z and 7 is one of 0, 1/2, V/d/2, (1 +V/d)/2. But clearly
ut+vvVd € Og son € Okg. Now 1/2 and Vd/2 ¢ Ok. Ifd # 1 (mod 4)
the (1++v/d)/2 ¢ Ok and so 7 = 0, and so o = u 4 vv/d with u, v € Z.
This gives (i).

Suppose d = 1 (mod 4). Then (14+/d)/2 is an integer. Thus 7 = 0
or (1++/d)/2. In the former case

a=u-+vVd= (u—v)+2v(1+—2\/8)
and in the latter case
a:u+v\/3+% = (u—v)+(2v+1)%.
This completes the proof. U

Remark. If d # 1 (mod 4) then we know from the above that
Ok ={a+bVd : a,beZ}.

If d=1 (mod 4), then the following is a very useful way of writing the
integers:

Ok ={a+bVd : a,bEZ}U{g—i-%w/g ; 7’,5€2Z—|—1}.

5. Bases and Discriminants

LEMMA 105. Let K be a number field of degree n. Let H be a finitely
generated subgroup of OF of rank n. Suppose wy, ..., w, and Ny, ..., M,
are two bases for H. Then

Alwyy.ooywn) =AMy ).

Thanks to the lemma we may write without ambiguity A(H) =
A(wy, ..., wy,) where wy, ..., w, is any basis for H.
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Proor. We know by Algebra I that

n
Wi =Y ey
j=1

where ¢;; € Z and the n x n matrix (¢; ;) is unimodular (meaning it
has determinant +1). By Lemma 74 we have

A<w17 <. ,wn) = Det((ci,j))Q ’ A(Uh s 77771)
proving the result. U

LEMMA 106. Let K be a number field of degree n. Let H be a finitely
generated subgroup of OF of rank n. Then |A(H)| is a positive integer
(and in particular it is non-zero).

PRrROOF. Let wy,...,w, be a Z-basis for H. Recall that
A(wi, ... ,wp) = Det(Traceg/g(w; - w;)).

However H C Ok so the entries of the determinant are in Z. It remains
to show that A(H) # 0. Suppose A(H) = 0. Then, by Theorem 75,
the elements wy, . .., w, are not a Q-basis for K and so they are linearly
dependent over Q: say ajw; + -+ + a,w, = 0 where a; € Q and not
all zero. Multiplying by the lem of the denominators of the a;, we can
suppose a; € Z and not all 0. This contradicts the fact that wy,...,w

is a Z-basis for H. O
THEOREM 107. Let K be a number field of degree n. Let G, H be
finitely generated subgroups of OF of rank n and suppose H C G.

Then
A(H) =[G : H?- A(G).

This is saying that the discriminant of a subgroup is bigger in ab-
solute value than the discriminant of the group.

Proor. We know by Algebra I that there is a Z-basis wy,...,w, for
G such that
m= dlwl, T2 = ngJg, ooy N = dnwn

is a Z-basis for H, with dy,...,d, being positive integers. Now the
index [G : H] = dy-dy - - - d,. The change of basis matrix for going from
w; to the n; is the diagonal matrix diag(ds, ...,d,). By Lemma 74

A(H) = A1y 1)
= Det(diag(dy, ..., dn))* - Awi, ..., wn)
= (dydy -+ dn)Q -A(G)
—[G: H]? - A(G).
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6. Existence of Integral Basis

THEOREM 108. Let K be a number field of degree n. Then Ok has
an integral basis of rank n. In other words there are algebraic integers
w1, ...,w, such that

Oy =7 -w®Z w,® - BL-w,.

PROOF. We need to show that O}, is finitely generated of rank n. First
we show the existence of a subgroup of O} that is finitely generated
of rank n. This is easy. Start with any basis a1,...,q, for K/Q.
By Proposition 84 there are non-zero integers mg, ..., m, such that
B; = m;q; are algebraic integers. Now just check that gy,..., 3, is still
a basis for K/Q. Let H =7Z-$,®---®Z- 3,. We know by Lemma 106
that |A(H)| is a positive integer.

Now from among the finitely generated subgroups of rank n we
choose one, let’s call it H, such that |A(H)| is as small as possible. We
will show that Of = H. Let a € OF; we want to show that o € H.
Let G be the subgroup of O} generated by o and any basis for H. In
particular G is finitely generated and H is a subgroup of G. As H has
rank n, we see G must have rank > n. But by Lemma 100, the group
G must have rank < n. Thus G has rank n. By Theorem 107 we know
that

A(H) =[G : H?-AG).
By the minimality of |A(H)| we have [G : H] = 1. Thus G = H and
so « € H. Hence Of = H. The proof is complete as H is finitely
generated of rank n. O

DEFINITION. We define the discriminant of K (also called the dis-
criminant of Of) to be the discriminant of any integral basis for Ok.
It is denoted by Ag.

7. Algorithm for Computing an Integral Basis

LEMMA 109. Let K be a number field of degree n. Let wy, ... ,w, € Ok
be independent but not a Z-basis. Then there is a prime p such that

p? | Alwy,...,w,) and rational integers 0 < u; < p, not all zero, such
that R
ULwy + -+ - + UpWy,
Sat € Ok.
p
Moreover, if n1,...,n, is a basis for the subgroup spanned by wy, ..., w,

and (ujwy + - -+ + uywy,)/p then

1
ANy .oy nn) = E-A(wl,...,wn).

PROOF. Let H be the subgroup generated by the w;. Suppose Ok # H
and let m = [Of : H] > 1. Let p | m. We know A(H) = m? - A(OF)
and so p* | A(H). Now consider the quotient O} /H. This is an abelian
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group of order m. By the Fundamental Theorem of finitely generated
abelian groups you can show it has an element of order p (you can also
deduce this from Sylow’s Theorems if you know what these are). Thus
there is @ € Ok such that p(a+ H) =0 but a + H # 0; i.e. pao € H
but a ¢ H. As pa € H we may write

pa = a1wy + -+ + apWwy

with a; € Z. Now let a; = u; +pb; with u;, b; € Z and 0 < u; < p. If all
the u; are zero then a = bywy + - - - + byw, € H giving a contradiction.
Thus not all u; are zero. Let
UW + - F Uy
8= :

p

Then
f=a—(bjw + -+ byw,) € Ok
as required.

For the last step let G be the group generated by the w; and 5. It
is easy to show that H has index p in G so A(G) = A(H)/p*. O

EXAMPLE 110. Let 0 be a root of X3+ X +1. We compute an integral
basis for K = Q(#). We start with 1,6, 6* which is a basis for K and
consists of elements of Ok. By Exercise 72 this has discriminant

A(1,0,0%) = —4 — 27 = —31.
This is squarefree, so 1,6, 6% is an integral basis for O.

EXAMPLE 111. We continue Example 71. Recall that f = X3 + X? —
2X + 8, that 6 is a root of f and that K = Q(f). We would like to
compute an integral basis and the discriminant of Ox. We found that

A(1,6,0%) = —2012 = 2% x 503.

If 1,0,6% is not an integral basis, then the index of the subgroup gen-
erated by it in O can only be 2. Moreover, in this case there are
integers 0 < u; < 1, not all zero, such that

Uy + U160 + us0?
g = Mo 12 207 ¢ 0.
This gives us seven possibilities to test. We can cut down the work a

little. For example, taking traces we find

3U0 — Uy + 5U2
2
This rules out (ug, ui, us) = (1,0,0), (0,1,0), (0,0,1), (1,1,1). So we're
left with three possibilities:
(uo, u1,u9) = (1,1,0), (1,0,1), (0,1,1).
We can get a little further by trying norms. Note that

u u u
Mgz;o-lg—l—?l-Mg%—?z-M@z.

€.
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Thus
1/2 0—4
Norm((1+6)/2)) =[1/2 1/2 1| =-5/4
0 1/2 0
thus (ug, u1,u2) # (1,1,0). Similarly
1/2 -4 4
Norm((1+6%)/2)=|0 3/2 —5|=29/4,
1/2 —1/2 2

thus (ug, w1, uz) # (1,0,1). We're finally left with 3 = (64 6?)/2. This

has matrix

0 —4 0
Mg=[1/2 1 —4
/2 0 1

and characteristic polynomial

xxs(X)=X?—2X?+3X — 10 € Z[X].
Thus 3 € Ok. Since 6% = 23 — 0, the subgroup generated by 1,6, 6%, 3
has basis 1,0, 3. This has discriminant A(1,6, 3) = (1/4)-A(1,0,0%) =
—503 which is squarefree (in fact prime). Thus 1,0, (6 + 6?)/2 is an
integral basis, the Ax = —503.

Remark. We showed in the above example that Ok # Z[f]. It can in
fact be shown that Ok # Z[a] for any o € Ok. We see that there is
no analogue of the Primitive Element Theorem for rings of integers.



CHAPTER 5

Factorisation and Ideals

1. Revision: Units, Irreducibles and Primes

Let R be an integral domain (commutative ring with a 1 and with-
out zero divisors). Recall that an element a € R is a unit if there is
some b € R such that ab = 1. The set of units form a multiplicative
group denoted by R*.

Recall that an element a € R is called irreducible if it is non-zero,
non-unit, and whenever we can write a = bc with b, ¢ € R then b is
a unit or ¢ is a unit. An element a € R is a prime if it is non-zero,
non-unit, and whenever a | be with b, ¢ € R then a | b or a | c. We say
that a, b are associates if a = ub where u is a unit of R.

EXERCISE 112. Show that a prime is also an irreducible (you did this
in Algebra II, and it’s easy).

We say that R is unique factorisation domain (UFD) if every
non-zero non-unit a can be written as a product a = ryry---r, where
the r; are irreducibles and if moreover a = 5153 - - - s, where the s; are
irreducibles then n = m, and after permuting, r; and s; are associates.
In a UFD, every irreducible is a prime.

We say that R is a principal ideal domain (PID) if every ideal
of R is a principal ideal (i.e. generated by one element). In Algebra
IT you showed that a PID is also a UFD. The converse is not true in
general, but we’ll see that the converse is true for R the ring of integers
of a number field.

ExXAMPLE 113. You know that Z (the ring of integers of Q) is a UFD.
If you did Introduction to Number Theory then you also know that
Z[i] (the ring of itnegers of Q(7)) is a UFD.

Here we consider Z[v/—5] (the ring of integers of Q(v/—5)). Note
that

2.3=6=(1+vV-5)(1—v-5).
We have here two factorisations of 6. We claim that both are fac-
torisations into irreducibles. Let’s check for example that 1+ /=5 is
irreducible. Suppose 1+ /=5 = (a + by/—5)(c + dv/—5) where a, b, c,
d are integers. Taking norms we have
6 = (a* + 5b*)(c* + 5d°).
45
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Thus without loss of generality a? + 50> = 1 and ¢* + 5d*> = 6 or
a’? 4+ 5b? = 2 and ¢® + 5d*> = 3. It is clear that the second case forces
b =0 and a? = 2 which is impossible. It follows from the first case that
(a,b) = (&1,0) and so a+by/=5 = £1 is a unit. Thus 1++/=5 is indeed
irreducible. You can check that 1 — /=5, 2, 3 are also irreducible.

We show that 2, 1 +1/—5 are not associates and 2, 1 — /=5 are
not associates. This is immediate because the ratios (1 ++/—5)/2 and
(1 —+/=5)/2 do not belong to Z[/—5] (and hence certainly are not
units in Z[y/—5]). This shows that Z[\/—5] is not a UFD. It follows
from this that Z[v/=5] is not a PID.

2. Revision: Ideals

We saw that unique factorization can fail for rings of integers of
number fields. It turns out that we can recover unique factorization if
we look at ideals instead of elements. What this means is that we will
show that every ideal can be written as a product of powers of prime
ideals in a unique way.

We shall mostly use gothic letters for ideals a, b, etc. Let R be a
ring. Recall that an ideal a of R is a subset a C R satisfying

e 1 is an abelian group under addition;
e xaCaforx e R.

If a € R we define the principal ideal generated by a be
aR={ar : r € R}.

Another common notation for aR is («). Of course (1) = R. When we
think of R as an ideal it is usual to write it as (1). The zero ideal is
just {0}; we usually write this as (0) or simply 0.

In more generality, if aq,as,...,q, are non-zero elements R we
define the ideal generated by oy, ..., a, to be

(al,...,an>:{2&ai : 51,...,Bn€R}.
i=1

If a, b are ideals then so is
(a,b0) ={a+p : a€a, fEb}.
We sometimes write a + b for (a,b). We say that a, b are coprime if
a+b=(1).
We define the ideal product ab to be the set of all finite sums

Yo a;f; with ; € a and f; € b. It is an easy exercise to show that
ab is again an ideal.

EXERCISE 114. Let a and b be ideals. Show that a 4 b, ab are ideals.

LEMMA 115. Let K be a number field. FEwvery ideal a of Ok can be
written in the form a = (o, ..., a,) for some a; € Ok.
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PROOF. Write at for a considered as an abelian group. This is a sub-
group of O} which is finitely generated. Thus there exists ay, ..., a,
such that
t=Z-01®---BZ-a,.
Clearly
a=(ag,...,an).

0

Lemma 115 tells us that every ideal is finitely generated. Rings
with such a property are called Noetherian.

LEMMA 116. Ifa = {aq,...,ap) and b= (B1,...,B,) then
a+b: <0517"‘7Oém7ﬁl7"'7ﬁn>7

and
ab=(-p; :i=1,....m, j=1,...,n).

PRrRoOOF. This is clear from the definition of ideal addition and multi-
plication. Il

EXAMPLE 117. Let K = Q(v/=5). We know that Oy = Z[\/—5]. We
saw in Example 113 that this is not a PID. Let’s write down a non-
principal ideal of Of. Let a = (2,1 + y/—5). We want to show that it
is non-principal. Suppose it is, say

a=p3-0k

for some 3 € O. Since 8|2 and | (1 + +/=5) we have Norm(3) | 4
and Norm(3) | 6 and so Norm(3) | 2. Write 8 = u + vy/=5 where u,
v are integers. Thus u? + 5v? = £1 or £2. It follows that v = 0 and
u==1,s01==40 € a(and so a = Ok). However, any element of a
has the form

2(a+bvV—=5) + (c+ dv—5)(1 + v —-b),
with a, b, ¢, d € Z. If this equals 1 then
2a 4+ c¢—bd =1, 2b+c+d=0.

But 2a 4+ ¢ —5d =2b+ c+d (mod 2), and so 1 =0 (mod 2) giving a
contradiction! Therefore a is non-principal.
From the recipes in Lemma 116

a+a=a,
(Which can be deduced from the definition of an ideal) and
= (4,2 +2v/-5,—-4+2/-5)  (as (1 ++v/—=5)? = -4 +2/-5)
= (4,2 4 2¢/—5,2/-5) (adding first generator to the last)
= (4,2,2y/-5) (subtracting third generator from second)
= (2) (since 4 and 2v/—5 are multiples of 2).
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Thus a? is a principal ideal, even though a is non-principal.
Now let

b=(3,1+v-5).
You can check that this ideal is non-principal. Note that a4 b contains

both 2 and 3 so contains 3 —2 = 1. Thus a + b = Ok (i.e. the ideals
a, b are coprime). Also

ab = (6,24 2v/—5,3 + 3v/—5, =4 + 2/—=5)
= (6,1+ /=5, —4 + 2v/—5)
= (6,1++=5)  since —4 4 2v/—5 = —6+4(1 + V/-5)
= (14 +-5) (since (1 ++/=5)(1 — v/~=5) = 6).

Thus again ab is principal even though both a and b are non-principal.

3. The Noetherian Property

THEOREM 118. Let R be a ring (commutative with 1). Then the fol-
lowing are equivalent.
(i) Fvery ideal of R is finitely generated (an ideal is finitely
generated if it can be written as (o, . .., ) for some oy, ... o €
R).
(ii) R satisfies the ascending chain property for ideals: if a; C
a; C az C --- are ideals then there is some m such that a,, =
41 = Oy = =00
(i) Every non-empty set of ideals S contains a mazximal element
(an element a € S is maximal if a is not properly contained
inany b e S).

A ring satisfying any (and hence all) of properties (i)—(iii) is called
Noetherian.

PrOOF. (i) implies (ii). Write

)
a=Ja.
n=1

It is easy to see that a is an ideal. By (i) we have a = (aq,...,ay).
But each «; is contained in some a,,. Let m = max(m;). Then
ai,...,0Q, € a,. Hence a = a,,. It follows that a,, = a,,11 = a2 =

(ii) implies (iii). Suppose there is no maximal element. Let a; be
any element of S. As it isn’t maximal, there is some ay in S which
properly cotains a;. Repeat the process, to obtain an ascending chain

alga2ga3g_...

which is not stationary. This contradicts (ii).
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(iii) implies (i). Let ¢ be an ideal. We want to show that ¢ is finitely
generated. Let S be the set of finitely generated ideals contained in «.
The set S is non-empty, since () € S for any v € ¢. By (iii), the set S
has a maximal element a. As a is finitely generated, a = (ay, ..., ay).
We know a C ¢. We claim ¢ = a which would complete the proof. Let
a € ¢. Then
b= (a...,0n, )

is a finitely generated ideal contained in ¢ which contains a. By the
maximality of @ we have b = a. Thus a € a. Hence ¢ = a, and so is
finitely generated. O

THEOREM 119. Rings of integers of number fields are Noetherian.

PrOOF. Any ideal of Ok is finitely generated by Lemma 115. The
theorem follows from Theorem 118. O

4. Quotient Rings
Let a be an ideal of the ring Og. A coset of a is of the form
ata={a+a: acal.

Recall that two cosets are equal a+a = f+a if and only if « — 5 = a.
We define the quotient

Org/a={x+a : x€a}

A priori Og/a is just the set of cosets of a, but we can make it into
a ring by defining addition and multiplication as follows:

(x+a)+(y+a)=(r+y) +a, (x+a)(y+a)=zy+a.

It is an easy exercise to show that these operations are well-defined and
that they do give a ring structure on O /a.

We would like to prove that if a is a non-zero ideal then Ok /a is
finite. Before we can do this we need the following lemma.

LEMMA 120. Let a be a non-zero ideal of O. Let o be a non-zero el-
ement of a. Then Normpg g(a) € a. In particular a contains a positive
rational integer.

PROOF. Let oy,...,0, be the embeddings of K. Then Norm(a) =
ajag -+, where o = oy(a). Without loss of generality a; = a.
Now the «; are algebraic integers (they share the same minimal poly-
nomial as «). Thus the product f = ay---a, € O. Moreover,
f = Norm(a)/a. But Norm(a) € Z C Ok and a € Ok so =
Norm(a)/a € K. Hence f € ONK = Ok. It follows that Norm(a) =
af € a. As «a is non-zero, Norm(«) is a non-zero rational integer. So
either Norm(«) or — Norm(«) is a positive rational integer in a. [

THEOREM 121. Let a be a non-zero ideal of Ok. Then the quotient
ring Ok /a is finite.
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Proor. By Lemma 120 there is some positive rational integer m € a.
Thus Og 2 a O mOk. To show that the index [Ok : a] is finite it
is enough to show that the index [Ok : mOg]| is finite. But as an
abelain group O = Z" (where n = [K : Q]) and mOg = mZ", so
Ok /mOk = (Z/mZ)™ which is finite. O

5. Prime and Maximal Ideals

We need to revise some Algebra II.

DEFINITION. Let R be a ring (commutative with 1). We call a proper
ideal p prime, if for all a, § € R we have

afep = a€p or [ep.
We call a proper ideal m maximal if there isn’t any ideal a satisfying
mCaCR.

In words, a proper ideal is maximal if and only if it is not properly
contained in some other proper ideal.

THEOREM 122. Ewvery proper ideal of Ok 1is contained in a maximal
1deal.

PROOF. Let a be a proper ideal. Let S be the set of proper ideals
containing a. This is non-empty as a € S. By the Noetherian property
of Ok, the set S must contain a maximal element m. It is clear that
m is a maximal ideal. U

You will no doubt recall the following theorem from Algebra IT and
have no trouble in reconstructing its proof. Here we do the proof a
little differently.

LEMMA 123. Ewvery finite integral domain is a field.

PRrROOF. Let R be a finite integral domain and let a be a non-zero
element in R. We would like to show that a is invertible. The sequence
a,a?,a®,... must have repetition. Thus there are n < m such that
a™ = a". Thus a"(a™ ™ —1) = 0. As a # 0 and R is an integral
domain, ™™™ = 1. But m —n > 1, so a has an inverse in R, namely
am—n—l‘ O

We shall need the following theorem, again from Algebra II.

THEOREM 124. Let R be ring (commutative with 1). An ideal p is
prime if and only if R/p is an integral domain. An ideal m is mazimal
if and only if R/m is a field. Maximal ideals are prime.

PRrROOF. The definition of primality for an ideal p can be reformulated
as follows:

(a+p)(B+p) =0 = a+p=0 or S+p=0.

This is the same as saying that Ok /p is an integral domain.
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Suppose m is maximal. Let a +m # 0 (i.e. a ¢ m). Then the ideal
aQOg + m strictly contains m and so by definition of maximality equals
Ok. In particular 1 € aOg +m and so 1 = ab+ m where b € Ok and
m € m. But then (a +m)(b+m)=1—-—m+m=1+m. Thus O/m is
a field. Conversely, suppose O/m is a field. Let a be a ideal properly
containing m. Thus there is some element a € a with a ¢ m. Hence
a+m # 0 and is therefore invertible in the field Ok /m. In particular
there is some b € Ok so that (a+m)(b+m) = 14m. Sol—ab e m C a.
But a € aso 1 € aso a= Ok proving maximality of m.

For the last part if m is maximal, then Ok /m is a field and so an
integral domain, therefore m is prime. O

EXERCISE 125. Here is a direct way of showing the maximal ideals
are prime. Suppose that m is maximal and suppose that aff € m but
a ¢ m. Let m" = (o) + m. Show that m’ = (1). Deduce that § € m.
Hence m is prime.

THEOREM 126 (Non-zero prime ideals are maximal). Let K be a num-
ber field. An non-zero ideal of Ok is maximal if and only if it is prime.

Proor. We know that maximal ideals are prime. If p is a non-zero
prime ideal, then Ok /p is an integral domain, which is finite by The-
orem 121. Thus Ok /p is a field by Lemma 123, so p is maximal. [

EXERCISE 127. The conclusion that a prime ideal is maximal is false
for more general rings. Convince yourself that the ideal X - Q[X, Y] in
the ring Q[X, Y] is prime but not maximal.

6. Fractional Ideals

We aim to show that every non-zero ideals can be written as a
product of prime ideals, and that any such factorisation is unique up
to reordering. To achieve this we need to introduce the notion of a
fractional ideal, which is merely a technical convenience.

DEFINITION. A fractional ideal of Ok is a subset a C K satisfying
the following:
(i) ais an abelian group under addition;
(ii) xa C a for every x € Ok;
(iii) there exists some non-zero y € Ok such that ya C Ok.

Warning: A ideal of Ok is a fractional ideal of Ok, but a fractional
ideal of Ok need not be an ideal of Ok. Indeed it is a subset of K but
in general not of O.

EXERCISE 128. Convince yourself that %Z is a fractional ideal of Z but
not an ideal of Z.

The following lemma is clear.
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LEMMA 129. Any ideal of Ok is also a fractional ideal. A fractional
ideal of Ok is also an ideal of Ok if and only if it is contained in O.

LEMMA 130. A subset a C K is a fractional ideal of Ok if and only
ifa= % - b where b is an ideal of Ok and [ is a non-zero element of
Ok.

PROOF. It is easy to see that if b is an ideal then = - b is a fractional

1
n —_
B
ideal. Conversely let a be a fractional ideal. By (iii) in the definition,
there is a non-zero 3 such that fa C Og. Let b = Sa. Now it’s easy
to check from (i) and (ii) that b is an ideal. d

We extend our earlier notation for ideals generated by elements.
Given aq,...,q, € K we write

<Oél,a2,...,an> = {251@1 . ﬁl,...,ﬂnEO[{}.
=1

We define multiplication for fractional ideals in the same way we
defined it for ideals: ab is the set of all finite sums >, o;f3; with
a; € aand 3; € b.

LEMMA 131. The product of two fractional ideals is a fractional ideal.

PRroor. This follows from Lemma 130 as the product of two ideals is
an ideal. O

LEMMA 132. Let a be a non-zero ideal of Ok and define
al'={3€K : BaC Ok}

Then

(a) a=! is a fractional ideal of Ok ;

(b) OK Q Cl_l,'

(c) ata is an ideal of Of.

It will turn out that a~'a = Ok = (1) thus a™! is the inverse of a

in the group of fractional ideals. This will take us a while to prove.

PROOF. Let’s show that a=! is a fractional ideal. Clearly 0 € a=!. If
b1, PBo € a~! then

(B1+ B2)a C fra+ faa C O + Ok = Ok.

Thus B + B € a~!. Similarly —3; € a~!. Thus a™!, considered
additively, is a subgroup of K. Moreover, if z € O and 3 € a~! then

(zf)a = z(fa) C 20k C Ok.

Hence 23 € a™! and so za™' C a=!. Thus a! satisfies conditions (i)
and (ii) in the definition of fractional ideal.

Finally let y be any non-zero element of a. Then Sy € Ok for all
B € al. Thus ya=' C Ok so we satisfy condition (iii). Thus a™! is a
fractional ideal of Of. This proves (a).
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Part (b) is simply saying that Sa C O for all § € Ok. But as a
is an ideal of O we have fa C a C Ok, proving (b).
By definition of a=!, for any 3 € a~! we have 3-a C Ok. Thus

ala= Z B-aC Ok.

Bea—1

As the product of fractional ideals is a fractional ideal, we see that a~'a
is a fractional ideal contained in O, and thus an ideal of Og. This
proves (c). O

EXERCISE 133. Check that (a)™' = (a™!) for non-zero a € O.

EXERCISE 134. Let a € b be non-zero ideals of Ok. Check that
b-! Cal

7. To Contain is to Divide

We would like to define what it means for one ideal to be a divisor
of another ideal. For principal ideals this perhaps clear; we want (a) to
divide () precisely when « divides 5. The following exercise suggests
how we can generalize this notion from principal ideals to arbitrary
ideals.

EXERCISE 135. Let a, 8 be non-zero elements of Ok. Show that « | /3
is equivalent to () D ().

DEFINITION. Let a and b be non-zero ideals of Ox. We say that a
divides b and we write a | b if a D b.

Before proceeding we need one more property of prime ideals.

LEMMA 136. Suppose that a, b and p are non-zero ideals such that p
is prime and p | ab. Then either p | a orp | b.

Perhaps you would like to prove this for yourself before looking at
the proof.

PROOF OF LEMMA 136. Proof suppose p | ab but p t a. This means
p O ab but p 2 a. In particular, there is some a € a such that a ¢ p.
Let b € b. Then ab € ab C p. As p is prime and a ¢ p we have b € p.
Thus p O b, which means p | b. O

8. Unique Factorisation of Ideals

LEMMA 137. Let a be a non-zero ideal of Ok. Then there are prime
ideals py, ..., p, such that a | pips---p,.

PROOF. Note that a | pips---p, means p1po---p,. C a. Let S be the
set of ideals not containing any product of non-zero prime ideals. The
lemma is simply asserting that S is empty. We suppose S' is non-empty.
As Ok is Noetherian, S must have a maximal element a.
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Now a is not prime, otherwise we can take p; = a. Thus there are
B, v ¢ a such that By € a. Let

b=a+ (f), c=a+ (y).

Then a C b, a C ¢. By the maximality of a in .S, the ideals b, ¢ do not
belong to S. Thus there are prime ideals p; such that

pr---pr &b, P ps S
But then
Pieps She Ca®+ fatya+ (By) Ca,
giving a contradiction. U

LEMMA 138. Let p be a non-zero prime ideal of O. Then p~t properly
contains O.

PROOF. From the definition of p~! we see that p~! contains Ox. We
will suppose p~! = Ok and obtain a contradiction. Let o be a non-zero
element of p. Thus (o) C p and so p | (o). By Lemma 137, there are
non-zero prime ideals pq, ..., p, such that

(@) | pipa---pr
We may assume that r is minimal. Thus p | p1ps - - - p,. By Lemma 136,
we have p | p; for some i. Without loss of generality p | p;, which
means p O p;. As prime ideals are maximal, we have p = p;. Since
() | ppa - - - p, we have

p-paps---pr Ca-Ok.
Hence
a 'pops---py - p C Ok
It follows that
a 'paps--p, S = Ok
Hence
paps -+ p, € Ok = (a).

This contradicts the minimality of r. U

LEMMA 139. Let a, p be non-zero ideals with p prime. Suppose a C p.
Then p~—ta is an ideal of Ok properly containing a.

PROOF. Since 1 € p~! we see that p~'a contains a. Moreover, a C p
sop~t Cat Hence p~la Cala C Ok. Thus p~tais an ideal of Ok
containing a.

Suppose p~ta = a. Thus for all # € p~! we have fa C a. By the
Integral Stability Lemma (Lemma 89) we have § € Ok for all § € p~1.
So p~! = Ok. This contradicts Lemma 138. Hence p~'a is an ideal of
Ok properly containing a. O

LEMMA 140. If p is a non-zero prime ideal of Ok, then p~1p = Ok.
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PROOF. By Lemma 139, p~!p is an ideal of Ok properly containing p.
But p is a maximal ideal. Thus p~tp = (1). O

THEOREM 141 (Unique Factorization Theorem for Ideals). Let K be a
number field and Ok be its ring of integers. Then every non-zero ideal
a can be written as a product of of finitely non-zero prime ideals

a= sz
=1

Moreover this factorization is unique up to re-ordering.

We note an important convention, which is that the ideal O = (1)
is regarded as the product of zero many prime ideals.

Proor. Existence. Let S be the set of ideals that cannot be writ-
ten as products of non-zero prime ideals. We want to show that S is
empty. Suppose S # (). By the Noetherian property, S has a maximal
element a. Now a # (1) (since this is the product of the empty set of
prime ideals). Thus a is proper and so contained in a maximal ideal p.
Since a C p, Lemma 139 tells us that p~'a is an ideal of Ok properly
containing a. As a is maximal in S, p~ta ¢ S. Thus it can be written
as a product of non-zero prime ideals

pla=pipapy
Multiplying both sides by p (and using p~'p = (1) from Lemma 140)
we obtain a contradiction.

Uniqueness. Suppose that pi,...,p,, and qq,...,q, are non-zero
prime ideals of Oy satisfying

(13) Hpi = H q; -
i=1 j=1

We want to show that n = m and that p;,...,p,, and q,...,q, are
the same up to re-ordering. We do this by induction on min(m,n).
Suppose first that min(m,n) = 0. Without loss of generality suppose
that m = 0. If n = 0 then there is nothing to prove. So suppose that
n > 0. Hence we have
(1) = qid2 - - - qn-

But q192...q9, € q; for i = 1,...,n, so q; = (1). As prime ideals are
proper by definition, we have a contradiction. Hence if min(m,n) = 0
then m =n = 0.

We now come to the inductive step. Suppose min(m,n) > 1. Note

that . .
1 j=1

In otherwords, p,, divides [[q;. By Lemma 136 we see that p,, | q;
for some j. After re-labeling we can suppose that p,, | g, and so
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Pm 2 qn. Now we recall that prime ideals of O are maximal. Hence
Pm = q,. Now multiply both sides of (13) by p;.t. As p_1tp,, = (1) (by
Lemma 140) we have

PP Pm—1 =q1q2 ... 1.

Now we can apply the inductive hypothesis to complete the proof of
uniqueness. Il

LEMMA 142. Let py, ..., p, be non-zero prime ideals and a = p1ps - - - py,.
Then a=t =p;'pyt - p; L. Moreover, a 'a = (1).

PROOF. Let b = p;'p; ' -+ p,t. From Lemma 140 we have ba = (1) =

Ok. Thus b C a~! (by the definition of a~'). However
al=a'0g =alabC Oxb =b.
Thus b = a™! as required. O

THEOREM 143. Let K be a number field. The set of non-zero fractional
ideals form an abelian group under multiplication, with Ok = (1) being
the identity element.

PrROOF. It is clear that multiplication of fractional ideals is commu-
tative and associative and that Ox = (1) acts as an identity element.
We must show that every that every non-zero fractional ideal has an
inverse. By Lemma 130, any fractional ideal a can be written in the
form /lgb where 8 € Ok and b is an ideal of Og. By the Unique Fac-
torization Theorem and Lemma 142, we know that b™'b = 1. Let
¢ = B -b~l. This is a fractional ideal and satisfies ca = Q. Thus a
has an inverse. U

9. To Contain is to Divide 11

In Section 7 we defined a | b to mean a O b. We are now able to
rewrite this in a more natural way.

LEMMA 144. Let a, b be non-zero ideals of Og. Suppose a O b. Then
there is an ideal ¢ of Ok such that b = ac.

PROOF. If a D b then O D ba~!'. Thus ba~! is an ideal of Ok and
we simply let ¢ = ba™!. O



CHAPTER 6

Norms of Ideals

1. Definition of Ideal Norm

Recall that any non-zero ideal a has finite index in Ok (Theo-
rem 121).

DEFINITION. Suppose that a is a non-zero ideal of Ox. We define the
norm of the ideal a by

Norm(a) = #0xk/a = [Of : a™].

Here a™ is simply a viewed as an additive group.

2. Multiplicativity of Ideal Norms

LEMMA 145. Let a be a non-zero ideal and p a non-zero prime ideal.
Then there is some o € a — ap such that

a= (a)+ ap.
PROOF. We know that ap C a. Fix o € a —ap. Let b = (a) + ap.
Thus we have inclusions

ap CbCa

I we obtain inclusions

Multiplying by a~
p g ba_l - OK
Thus ba~! is an ideal of Oy strictly containing the maximal ideal p
and so ba™! = Ok so a=b = (@) + ap. O
LEMMA 146. Let a be a non-zero ideal and p be a non-zero prime ideal.
Then
[Ok : p] = [a: ap].
PROOF. By Lemma 145 there is some o € a—ap such that a = («)+ap.
Define

¢: O — a/ap, T = axr + ap.

It is easy to see that ¢ is a homomorphism of abelian groups. We will
show that

(i) ¢ is surjective.

(i) ker(¢) = p.

57
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Suppose (i), (ii) for now. By the First Isomorphism Theorem,

Ok/p = a/ap.
Thus
[O: p] = #O0k/p = #a/ap = [a : ap]
which is what we want. Now all we need is to show (i), (ii).

For (i), let 5 € a. Since a = aOk + ap we can write f = - x + 7
where x € Ok and 7 € ap. Hence ¢(x) =a-x+ap = 5+ ap so ¢ is
surjective.

It is clear that p C ker(¢). We will show that ker(¢) is an ideal of
Ok (the map ¢ is a homomorphism of abelian groups and not of rings,
so we cannot immediately conclude that ker(¢) is an ideal). Note

ker(¢) = {z € Ok : ax € ap} = Ox Na 'ap.

This is the intersection of a fractional ideal o tap with O and hence
is an ideal of Og. Since this contains p and p is maximal, we have
ker(¢) = p or ker(¢) = Ok. To complete the proof we want to show
the former, so suppose the latter. Hence

Or N oflap = Og.

Thus
Ok C a tap
and so
aOk C ap.
This contradicts a ¢ ap. O
THEOREM 147 (Multiplicativity of Ideal Norms). (i) Letpy,...,pn

be non-zero prime ideals. Then
Norm(pips - - - pn) = Norm(p;) Norm(ps) - - - Norm(p,, ).

(ii) Let a, b be non-zero ideals. Then Norm(ab) = Norm(a) Norm(b).
PRrOOF. We prove (i) by induction on n. If n = 1 then both sides are
Norm(p;). Suppose n > 2, and let a = p1po---p,—1. Then

apn g a g OK
Thus
[OK : Clpn] = [OK . Cl] . [Cl . apn]
By Lemma 146 we know that [a : ap,] = [Ok : p,]. Hence
[OK : apn] = [OK : Cl] . [OK : pn]
By definition of ideal norm we can rewrite this as
Norm(ap,,) = Norm(a) Norm(p,,).

Now we simply apply the inductive hypothesis to complete the proof
of (i).

Part (ii) follows from (i) and the unique factorization theorem. [
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3. Computing Norms

THEOREM 148. Let K be a number field of degree n and a a non-zero
ideal of Ok. Then a™ is a subgroup of OF of rank n. Moreover, if

01,...,0, is a Z-basis for a and wy,...,w, is an integral basis for Ok
then D )
N N N SRR e 728
Orm(a) D<w17 s 7wn)

PROOF. By Theorem 121, the index [O}; : a™] is finite. Thus a™ must
have the same rank as O}, which is n. By Theorem 107

Aa™) = [Of : a™]? - A(OF).
The theorem follows as
Alat) = A(S1,...,6,) = D(61,...,6,)°
and
AOF) = Awi, ... wy) = D(wy, ..., wy)?

and [0}, : a*] = Norm(a). O

The following theorem allow us to compute norms of principal
ideals.

THEOREM 149. Let 5 € Ok be non-zero and b = (f) be the principal
ideal generated by 3. Then
Norm(b) = |Normg,q(8)|-

PROOF. Let wy,...,w, be an integral basis for Ox. As b = () = 0k
it is clear that Swy, ..., Bw, is a Z-basis for b*. Hence by Theorem 148

we have
Nornt®) = [T |
But
o1(fwr) o1(Bws) ... o1(Bwn)
D(Bwr, ... Buoy) = 02(@01) 02(?0}2) 02(@%)

Un(Bwl) O-n<BW2) an(ﬁwn)

o1(B)or(wr) o1(B)or(ws) ... o1(B)or(wn)
_ |2(B)on(wn)  o2(Blon(ws) ... 02(B)on(wn)
o B)onler) on(Bon(ws) - ou(B)on(wn)
o1(wi) o1(wa) ... o1(wn)
ey [ ) )
on(w1) op(w2) ... oplwy)

= Normg(8) - D(wy, ... ,wn)
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where we have used Theorem 64. Thus Norm(b) = |[Normgq(3)|. O

ExaAMPLE 150. Let’s see an example of computing the norm of a non-
principal ideal. Let K = Q(+/15). As 15 is squarefree and 15 # 1

(mod 4), an integral basis for O is given by 1, v/15. Let
a=(7,14+V15) = 70k + (1 + V15)Ok.
Since, as an abelian group,
Ok = Z & ZV/15,

we see that a is spanned, as an abelian group, by 7, 7v/15, 1 +1/15 and
V15 - (14 \/ﬁ) = 15 + +/15. We now switch to Algebra I notation.
Write z; = 1 and 25 = v/15. Then Oy is the free abelian group with
basis x1, x5 and a the subgroup spanned by

7171, 71‘2, T +CC2, 15.131 + Zs.

Thus
Ok/a=(xy,x9 | Txy, Txo, 21+ T2, 1521 + T3).

To compute the quotient we need the Smith Normal Form of the matrix

70 1 15
071 11)°

10 00
07 0 0/
Ox/a=Z/1Z® Z/72 = L.)TL.
Hence Norm(a) = 7. Now we prove that a is not a principal ideal.
Suppose it is. Then a = (a + bv/15) where a, b € Z. Thus
7 = Norm(a) = [Norm(a + bv/15)| = |a® — 150%].

Hence a® —15b? = +7. This means that a®> = 2 or 3 (mod 5). However,
2, 3 are non-squares modulo 5. Thus we have reached a contradiction.
It follows that a is non-principal.

This is (exercise)

Thus

Warning: The above procedure allows us to compute Ok /a as an
abelian group. It doesn’t necessarily tell us what Ok /a is as ring. In
the above example we found that O /a is isomorphic to Z/7Z as an
abelian group. Any ring that is isomorphic to Z/7Z as an abelian group
is also isomorphic to Z/7Z as a ring. Thus O /a = F; as a ring.

However if we have an ideal a (in some ring of integers O ) such
that Ok /a is isomorphic to Z/27 x Z/27 as an abelian group, then
there are two possibilities for O /a as a ring. It could be isomorphic
to the ring Z /27 x 7Z/2Z or to the ring (field in fact) F,.
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EXERCISE 151. Let f = X3 + X? — 2X + 8 and let 6 be a root of f.
Let K = Q(f). In Example 111 we showed that 1, 6, (6* + 0)/2 is an
integral basis for Ok. Let

a=(51+0).
Compute Norm(a).

4. Is this ideal principal?

LEMMA 152. Let a C b be non-zero ideals of Ok. Then a = b if and
only if Norm(a) = Norm(b).

PROOF. If a = b then clearly Norm(a) = Norm(b). Suppose Norm(a) =
Norm(b). We have inclusions a C b C Og. Thus

[Ok :a] =[Ok : b][b: a].

But [Ok : a] = Norm(a) = Norm(b) = [Of : b]. Thus [b : a] = 1.
Hence a = b. U
LEMMA 153. Let a be a non-zero ideal of Og. Let o € a. Then a = ()
if and only if |[Normg q(co)| = Norm(a).
PROOF. As «a € a we know that (o) C a. By Theorem 149 we have

Norm((a)) = |[Normg g(a)|.
The lemma now follows from Lemma 152.
EXAMPLE 154. Let K = Q(+/15). As 15 is squarefree and # 1 (mod 4)
we know that a Z-basis for Ok is 1, v/15. Now consider the ideal
a = (17,7++/15). This has norm 17 (which you can check). Let’s show
that a is non-principal, by contradiction. Suppose it is. Lemma 153

tells us that 17 = |[Norm(«)| for some o € a. As a € O we may write
a =x +yV15 where z, y € Z. Thus

17 = |Norm(a)| = |2* — 15¢°|.
Hence
r? — 15y = +17.
We will get a contradiction by showing that this equation has no so-
lutions in Z. Reducing modulo 5 we have 22 = £2 (mod 5). But 2, 3
are non-squares modulo 5, so we have a contradiction.

g






CHAPTER 7

The Dedekind—Kummer Theorem

1. Motivation

LEMMA 155. Let K be a number field and let a be a non-zero ideal of
Ok. Let a = Norm(a). Then a € a.

PROOF. Recall that, by definition, a« = Norm(a) = #Ok/a. By La-
grange’s Theorem, a - (1 +a) =0+ a in Ok/a. Thus a € a. O

This chapter is about practically factoring ideals as products of
prime ideals. The motivation is provided by the above lemma. Write
a = Norm(a) we have a is a positive rational integer contained in a.
Thus aOk C a, or in other words, a divides aOf. Now at least we can
factor a in Z as a product of rational primes a = pips...p,. Thus a
divides p1Ok - p2Ok - - - p,Ok. So a first step to factoring, we want to
factor pOg as a product of prime ideals of Ok, for p a rational prime.
The Dedekind-Kummer Theorem lets us write pOk as a product of
prime ideals of Q. Thus we can factor aOk as a product of prime
ideals. Next we can try to workout which of these prime ideals are
actually factors of a.

2. Theorem and Examples

THEOREM 156 (Dedekind-Kummer Theorem). Let p be a rational
prime. Let K = Q(0) be a number field where 6 is an algebraic in-
teger. Suppose pt Ok : Z[0)]. Let

po(X) = f1(X) fo(X)2 - fr(X) (mod p)
where the polynomials f; € Z[X] are monic, irreducible modulo p, and
pairwise coprime modulo p. Letp; = (p, fi(0)). Then the p; are pairwise
distinct prime ideals of O and
(p) = pi'p3" -y
Moreover, Norm(p;) = piestfi),

Let’s do some examples of factoring ideals using the Dedekind—
Kummer Theorem.

EXAMPLE 157. Let K = Q(v/—30). Then 1, v/—30 is an integral basis
for O and so Og = Z[+/—30]. Since the index [Of : Z[v/—30]] = 1, we
can factor pOg for any prime p using the Dedekind—Kummer Theorem.

63
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The minimal polynomial for v/—30 is p = X? + 30. Let’s factor pOg
for primes p < 11.

Note that

X?+30=X" (mod 2).

Thus 20 = p3 where py = (2,1/=30). Similarly 30x = pZ where
ps = (3,/=30), and 50k = p2 where p5 = (5, /—30).

Now

X?*+30=X*-5 (mod7)

is irreducible modulo 7 (all we have to do is check that 0,1, ..., 6 are not
roots modulo 7, or we can use quadratic reciprocity which is quicker).
Thus 70k = p; is a prime ideal.

Finally

X?+30= (X +5)(X+6) (mod 11).

Hence 110k = py; - p); where
P = <117 Vv —30 + 5>7 plll = <117 v =30 + 6>

You might wander whether the ideals ps, ps3, ps, P7, P11, P}y are
principal or not. In fact p; = 7Ok so it is principal. Let’s consider
the others. We know that if an ideal a is principal, say a = («) then
Norm(a) = |Norm(«)|. This often gives us an easy way of showing that
an ideal is non-principal, or of searching for a generator if we suspect the
ideal is principal. By the last part of the Dedekind—Kummer Theorem,
Norm(py) = 2%8X) = 2. Now if p = (a) then we can write a@ =
r + yv/—30 (with z, y integers) and so |Norm(a)| = 2% + 30y?. Since
22 + 30y? = #£2 has no solutions in integers we have a contradiction
and so po is non-principal. The same applies for ps3, ps.

What about py1, p};? Again by the last part of the Dedekind—
Kummer Theorem,

Norm(py;) = Norm(p},) = 11.

But the equation z? + 30y? = 411 has no solutions in integers. There-
fore pq1, p’; are non-principal.

EXAMPLE 158. Let K = Q(v/17). As 17 = 1 (mod 4) we know that
an integral basis is 1,0 with § = (1 +/17)/2. Thus Ox = Z[0]. The
generator # has minimal polynomial pn = X2 — X —4. Let’s factor 20k.
Here
p=X"-X=X(X~-1) (mod 2).

Thus 20k = pop, where po = (2,6) and p, = (2,6 — 1). Note that
these are distinct prime ideals; the Dedekind—Kummer Theorm already
tells us that. But we can also check that by hand: if p, = p}, then 6,
0 —1 € py, so1 € ps, so po = Ok giving us a contradiction (prime
ideals are proper!). Thus py # pj.

The assumption p 1 [Ok : Z[#]] in the Dedekind—Kummer Theorem
is important. If we take ¢ = v/17 then [O : Z[¢]] = 2. So factoring
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X? — 17 (the minimal polynomial for ¢) modulo 2 will not necessarily
give us the correct factorization of 20f. Indeed, X? — 17 = (X —1)?
(mod 2), suggesting that 20k is the square of a prime ideal, which it
is not. However, if p is an odd prime, then p 1 [Of : Z[¢]] and so we'll
obtain the correct answer from factoring X2 — 17 modulo p.

EXAMPLE 159. Let K = Q(6) where § = /6. You can check that 1, 6,
6? is an integral basis for O and thus Ok = Z[f]. Let’s factor 5O.
The minimal polynomial for # is 4 = X3 — 6.

To factor 5Ox note that

p=X-1=(X-1)(X*+X+1) (mod5).
where the two factors are irreducible. Hence the ideals
p=066-1, q=01+V6+6)

are prime, and they have norms Norm(p) = 548X~ = 5 and Norm(q) =
5des(X*+X+1) — 95 Moreover,

50k =p-q.

Let’s show that p and q are principal. To do this for p all we have to
do is find an element in p that has norm 5. However /6 — 1 is in p and

Norm(v/6 — 1) = (V6 — 1)(¢V6 — 1)((*V6 — 1) =6 — 1 =5,

where ¢ = exp(27i/3). Thus p = (v/6—1)Ok is principal. What about
q? The easiest way to check that this is principal is to note that

50k = (V6 —1)0k - q

thus
a=(5/(V6-1)) Ox.
Now
5/(V6—1) = (CV6—1)(C*V6—1) = V6 + V/6+ 1.
Thus

q= (V6 +V6+1).

Next let’s factor 20k and 3Ok and show that the factors are prin-
cipal. Dedekind—Kummer tells us that

20K =1, 30, = 5°
where
t=(2,V6), s=(3,V6),

are prime ideals having norms 2, 3 respectively. Observe that 2—+/6 € t
and has norm

Norm(2 — V6) = (2 — V6)(2 — ¢(V6)(2 — ¢2V6) =8 — 6 = 2.
Thus
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Now to check that s is principal we can use a trick. Note that
(V60K)? =60k =20k - 30, =1 - 6°.
Hence (by unique factorization)
\3/6(’);( = ts.
Thus
s = (V6/(2-V6)) - Ox = (3+2V6+ V5) - O

How did we do the division v/6/(2 — v/6)? If you don’t know how to
do this see Homework Assignment 1, Question 11.

3. Proof of the Dedekind—Kummer Theorem

We follow the notation of the theorem.

LEMMA 160. Let
I =pZIX| + fiZ[X].
Then
ZIX)/T = F,[X]/(f:),
where f; denotes the image of f; in F,[X] (i.e. the polynomial you

obtain by reducing the coefficents of f; modulo p). In particular Z|X|/1
is a field of size pieafi),

PRroor. Let

¢ ZIX] = Fp[X]/(fi), g+ (fi).

This is clearly a surjective ring homomorphism. More g € ker(¢) if and
only if f; | g, which is equivalent to g = hy f; + phy for hi, hy € Z[X].
Thus ker(¢) = I. The isomorphism in the lemma follows from the First
Isomorphism Theorem.

Now consider the quotient F,[X]/(fi). Since f; is irreducible, this
quotient is a field extension of F, of degree deg(f;) and hence has
cardinality

#E,[X]/(fi) = p e,

LEMMA 161. Let

J = pZ[6] + fi(0)Z[0].
Then

Z[9)/J = FyX]/(fi)-
In particular Z[0])J is a field of size pieatfi),
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PROOF. In view of Lemma 160, all we have to do is establish an iso-
morphism of rings Z[X|/I = Z[#]/J. Now let

U ZX] = Z0)), g g(0) + J

This is clearly a surjective ring homomorphism. All we need to do
is show that the kernel is I. Observe g € ker(¢) iff g(0) € J iff
g(0) = ph1(6)+h2(0) fi(0) for some hy, hy € Z[X]. But this is equivalent
to g — phy — ha f; being a multiple of p(X) (the minimal polynomial of
6. Hence
ker(¢) = pZ[X] + fiZ[ X] + pZ[X].

Clearly I C ker(v)). To show equality we need to show that y € I. But
f; is a factor of 7i. Thus pu = hsf; + pha for some hs, hy € Z[X]. Thus
w € I and so ker(¢)) = I as required. O

LEMMA 162. p; is a prime ideal and Norm(p;) = pies(fi).

ProoF. We will show that Ok /p; = Z[A]/J. In view of Lemma 161
we know O /p; is a field and so p; is prime; moreover Norm(p;) =

#Oxk /pi = #L[0]/J = pieetlo,
Let
§:Z[0)) T — Ok/pi,  g(0) +J — g(0) +pi.

We need to show that £ is well-defined. But this follows as J C p;, and
thus if ¢1(0) + J = go(0) + J then g, (0) — g2(6) € J C p;, and so g1(0) +
p; = g2(0) + p;. Hence £ is well-defined and clearly a homomorphism
of rings. Next we show that £ is surjective. This is the only place we
use the hypothesis p 1 [Ok : Z[f]]. Let m = [Ok : Z[f]]. Then there
are a, b € 7Z such that am + bp = 1. Let a € O. Then

a+J=(am+bp)a+J=ama+J

as p € J. But ama = m(aa) € mOk C Z[A]. Thus a + J is in the
image of £. Hence ¢ is surjective. Finally as Z[0]/J is a field, ¢ is
injective. Thus £ is an isomorphism. U

LEMMA 163. The ideals p; are pairwise distinct.

PROOF. Suppose p; = py. Then p; contains p, f1(), f2(f). Now i
fo are coprime in F,[X]. Thus there polynomials g1, g» € Z[X] such
that
gi(X)f1(X) + 32(X) fo(X) = 1.
Thus
91(X) [1(X) + g2(X) f2(X) = 1 + ph(X)

where h € Z[X]. Thus
1= g1(0) f1(0) + 92(0) f2(0) — ph(0) € p1.

But p; is a prime ideal and therefore proper, giving a contradiction. [
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LEMMA 164. Let g, h € Z[X]| be monic polynomials. Then
{p,9(0)) - (p, h(0)) < (P, g()h(0)).

PROOF. The ideal (p,g(0)) - (p, h(0)) is generated by p?, ph(6), pg(0)
and g(0)h(6). But these are all contained in the ideal (p, g(0)h(0)). O

PROOF OF DEDEKIND-KUMMER. Let

:
€;
a=]]nl"
i=1

By Lemma 164, we have

T

H<pafz “C paHfz 62

=1
However

[ A(X)% = po(X) + pg(X)
for some polynomial g € Z[X]. Substituting # and recalling that

po(0) =0
[150

Thus
a C (p).
However,
NOI‘ID H NOI‘IIl el _ ]‘_[peZ deg(fi) — > iy ei-deg(fi) — pn

where n = deg(,ug) = [K : Q)] Moreover,
Norm((p)) = [Normgq(p)| = p".
{p

Since a and (p) have the same norm and a C (p) we conclude that
they’re equal. O



CHAPTER 8

The Class Group

1. Ideal Classes

DEFINITION. Let K be a number field. We know that non-zero frac-
tional ideals of Ok form an abelian group under multiplication which
we denote by [x. It is easy to see that the non-zero principal fractional
ideals form a subgroup which we denote by Pg. The class group is
defined as the quotient

CIK) = I/ Px.

If a is a non-zero fractional ideal, we denote its class in CI(K) by [a]
(thus [a] is simply the coset aPg). Note that two ideals a, b have the
same class if and only if the fractional ideal ab™! is principal. This is
equivalent to a = b for some v € K.

THEOREM 165. Ok is a UFD if and only if C1(K) is trivial.

Proor. If CI(K) is trivial then every ideal is principal, and so Ok is
a PID. Thus Ok is a UFD.

Conversely, suppose Ok is a UFD. Let a be a non-zero ideal of O
and let o be a non-zero element of a. As Ok is a UFD, there are
irreducible elements 7y, ..., of Ok such that

Q=TT - Tp.

Let p; = (m;). It follows that the ideals p; are prime ideals (exercise).
Now

a2 () =pip2--- P,
Thus a divides pipy - - - p,. Without loss of generality (by Lemma 144),

for some s < r. But the p; are principal so a is principal. Thus Ok is
a PID. It follows that CI(K) is trivial. O

The above illustrates the fact that the class group measures the
failure of unique factorization.

69
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2. Minkowski’s Theorem

THEOREM 166. (Minkowski) Let K be a number field of degree n and
signature (r,s). Let

! 4\°
BK:n_'(;) “VI]AK|

nn
Let a be a non-zero ideal of Ok. Then a contains a non-zero element
o such that [Normg g(a)| < By - Norm(a).

Minkowski’s Theorem is proved using the geometry of numbers.
The constant By is called the Minkowski Bound.

To prove Minkowski’s Theorem 166 you need another theorem of
Minkowski! This one is from the Geometry of Numbers, and was proved

in MA257.

THEOREM 167. (Minkowski’s Theorem for Lattices) Let S be a com-
pact, convex, symmetric subset of R™. Let L be a lattice in Z" of index
m. Suppose

2"m < Volume(S5).

Then S contains a non-zero element of L.

PROOF OF THEOREM 166. The proof is not hard, but it’s best to un-
derstand it in small dimension first, and then prove it full generality.
So we’ll only do the proof for imaginary quadratic fields and if you're
interested you can look up the general proof.

Let K be an imaginary quadratic field. In particular K has degree
n = 2, and signature (r,s) = (0,1). Thus Bx = (2/7) - /|Axk|.

We're given that a is a non-zero ideal. Thus a has a Z-basis con-
sisting of two algebraic integers which we’ll call w;, ws. We want to
show the existence of some non-zero o € a such that

2
(14) [Norm(a)| < — - v/|Ak| - Norm(a).
v
Write a = zw; + yws with z, y € Z. To simplify things (remember-
ing that we're in a complex quadratic field) write !
wp = a+ bi, wy = ¢+ di, a,b,c,d € R.
The field has the form K = Q(v/—D) where D > 0. It has two
embeddings oy, o9 which respecively send u+v+y/—D to u+vv/—D and

u—vy—D (for any u, v € Q). Note that the first is just the identity
and the second is complex conjugation. Hence

Norm(a) = (zwy + yws)(zwy + yws)
= ((ax + cy) + i(bx + dy))((ax + cy) — i(bx + dy))
= (az + cy)® + (bz + dy)*.

la, b, ¢, d don’t have to be rationals. For example in K = Q(v/—2) with
w=14+vV—2wetakea=1,b=+2.
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Hence we can rewrite (14) as
2

(15) (az +cy)? + (br +dy)* < = - /|Ag| - Norm(a).
m

Now recall that A(a) = A(Ok) - [Ok : a]*>. But A(Ok) = Ak and
Ok : a] = Norm(a). Hence

|Ak| - Norm(a) = v/|A(a)]
= [D(a)],
where D(a) is the determinant

w1 Wy

D(Cl) = D(thUQ) = w_l "

= 2i(ad — bc).
Hence we may rewrite (15) as
4
(az + cy)?® + (bx + dy)* < — - |ad — bc|.
T

All we need to show is there are x, y € Z, not both zero, such that this
inequality is satisfied. Let

Sz{(j) eR? . (ax+cy)2+(bx+dy)2§%-\ad—bd}.

We will take L = Z?. Thus the index m = [Z*: L] = 1. All we have to
do is show that there is a non-zero vector in S belonging to Z? = L. It
is here that we need Minkowski’s Theorem on lattices. All we have to
do is show that S is convex, compact and has volume > 4 (clearly S is
symmetric). Define

2 9 x z\  far+cy
rowor (D)o (2)- ().

Then T is a linear transformation. It has determinant ad — bc. We
know that this is non-zero since A(a) = —4(ad — bc)?. Thus T is an
invertible linear transformation (and in particular a homeomorphism).
Moreover,

T(S)z{(j}) €eR? . 22+w2§é'|ad—bc|}.
7r

This is a closed circle and hence compact and convex. As T is a
linear map, it preserves line segments, so S is convex. Moreover, as
it is a homeomorphism, S is compact. We merely have to check that
Volume(S) > 4. Note that

// ldzdw = Volume(T'(S)) =4 - |ad — bc|.
7(S)

The Jacobian of the transformation 7" is ad — be. Thus

4-lad — be| = // ldzdw = //|ad— beldzdy.
7(S) s

-1



72 8. THE CLASS GROUP

Volume(S) = // ldzdy = 4.
S

We deduce that

3. Finiteness of the Class Group

THEOREM 168. Let K be a number field of degree n and signature (r, s).

(I) CI(K) is finite.
(II) CI(K) is generated by the set of classes

(16) {lp] : p is a prime ideal, Norm(p) < B} .

We define the class number of K as hx = # CI(K). Part (I) of
the theorem tells us that hx < co.
Before proving Theorem 168 we need the following lemma.

LEMMA 169. Let B > 0. The number of ideals of Ok of norm < B is
finite.

PROOF. The norm of an ideal is a positive integer. Thus it is enough
to show, for each integer A in the range 1 < A < B, that the number of
ideals a of norm A is finite. Suppose Norm(a) = A. Then A = #0Oy /a.
By Lagrange A-(1+a) = 0+a. Hence A € a. Thus (A) C a we means
a | (A). By unique factorisation and Lemma 144 there are only finitely
many possibilities for a. U

PROOF OF THEOREM 168. Let b be a non-zero fractional ideal of O
Then b = %a where a is an ideal of Ok and § € Ok. Hence [b] =

[a]. By Minkowski’s Theorem, there is a non-zero o € a such that
|Norm(«r)| < Bk - Norm(a).

However (o) C a thus a | («). Hence we can write (o) = ac for
some ideal ¢ of Og. Moreover, by the multiplicativity of norms

Norm(¢) = Norm({(«a))/ Norm(a) = [Norm(«)|/ Norm(a) < Bk.
Moreover [¢] - [a] = [(1)]. Thus [b] = [a] = [¢]~'. Hence
CI(K) = {[¢] ™" : cis an ideal of Ok of norm < Bg}.

As there are only finitely many ideals of a given norm, this proves (I).
Now, ¢ = p; ... p, where the p; are prime ideals. Moreover Norm(p;) |
Norm(c), so Norm(p;) < Bg and

7 =lp] 7 )
Thus the set (16) generates Cl(K). O
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4. Examples of Computing Class Groups

LEMMA 170. Let p be a non-zero prime ideal of Ok. Then there is a
unique rational prime p such that p | pOg. Moreover, Norm(p) = p/
for some positive integer f.

We call p the prime below p. We say that p is a prime ideal of Ok
above p. We call f the degree of p.

PROOF. As p is a maximal ideal, we know that O /p is a finite field,
say IF,. From Algebra II we know ¢ = p/ for some rational prime p and
positive integer f. Hence Norm(p) = #F, = ¢ = p’.

Now we make use of the fact that Norm(p) € p (Lemma 155). Thus
p/ € p. As pis a prime ideal, p € p. Thus pOx C p and so p | pOx.

All that is left if the proof of uniqueness. Suppose p1, po are distinct
rational primes such that p | p;Ok. Then py, po € p. By Euclid (or
Bezout as some call it), there are a, b € Z such that ap; + bpy = 1.
Thus 1 € p contradicting the fact that prime ideals are proper, and
therefore proving uniqueness. O

Note: Because of this lemma, to compute the set of classes (16), we
merely have to list the rational primes p < By, factor each pOk (using
Dedekind-Kummer), and keep only those prime ideal factors whose
norm is at most By.

EXAMPLE 171. We compute the class group for K = Q(i). Then
Ok = Z[i], Ak = =4, n =2 and (r,s) = (0,1). Thus the Minkowski
bound is Bx = (2!/2%)-(4/7)' - V4 = 4/7 < 2. We need to factor pOx
for rational prime p < 2. There are no such primes. Thus CI(K) is
generated by the empty set of ideal classes, and so C1(K) = {1} (thus
hx =1). This tells us that Ok is a PID.

Now let’s see an application of this. Let p =1 (mod 4) be a prime.
Quadratic reciprocity tells us that —1 is a quadratic residue modulo p.
Hence the minimal polynomial y = X? + 1 for 4 factors as a product
of two linear factors modulo p. By the Dedekind—Kummer Theorem,
(p) = pp’ where p, p’ are prime ideals with Norm(p) = Norm(p’) = p.
But as Ok is a PID, we can write p = (x + iy) where z, y € Z.
Therefore

p = Norm(p) = 2% + y°| = 2* +
and we recover the familiar fact from Introduction to Number Theorem:
any prime p =1 (mod 4) can be written as the sum of two squares.

EXAMPLE 172. We compute the class group for K = Q(y/7). Then
Ox = Z[V7], Ag =28, n =2 and (r,s) = (2,0). Thus the Minkowski
bound is Br = (2!/2%)-(4/7)°-v/28 = v/7 < 3. The only rational prime
p < B is p = 2. We factor the ideal (2) using Dedekind—Kummer.
We have

X?—7=(X-1)* (mod?2).
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Thus (2) = p3 where py = (2,4/7 — 1). The prime ideal p, has norm
2 < Bg. Thus CI(K) is generated by {[p]}. We note that p contains
the element 3 + 7 = 2 x 2+ (V7 — 1) of norm 9 — 7 = 2. Thus
pa = (3+ /7). So [pa] = 1 (the trivial ideal class). Thus ClI(K) = {1}

and so hyx = 1.

EXAMPLE 173. We compute the class group of K = Q(v/—30). As
—30 is squarefree, # 1 (mod 4) we know that 1, § = /=30 is an
integral basis. In particular O = Z[0] so [Ok : Z[0]] = 1. Moreover
6 has minimal polynomial ;1 = X2 + 30. Now Ag = —120, n = 2,
(r,s) = (0,1). Thus
2!
Bg = % (4/m)' - V120 =6.97. ...
Thus CI(K) is generated by
{lp] : p is a prime ideal, Norm(p) < Bg}.

But Norm(p) = p? for some rational prime p and some d > 1. Thus we
need to factor the primes p < B, i.e. p = 2, 3, 5. However u = X?>
(mod p) for any of these 3 primes. By the Dedekind—-Kummer Theorem
the ideals

P2 = <279>7 ps = <376>7 ps = <579>
are prime and (p) = pi for p = 2, 3, 5. Thus these classes have
order dividing 2 in C1(K). Moreover Norm(py) = 298(X) = 2. If p, is
principal then p, = (x + yf) some integers z, y and then |22 + 30y?| =
Norm(ps) = 2 which is impossible. Thus ps is not principal. Likewise
ps3, Ps are not principal as the equations |22 + 30y*| = 3, 5 have no
solutions. Thus [ps], [p3], [ps] all have order 2. Also pops is non-
principal as it has norm 6, and the equation |2? + 30y?| = 6 has no
solutions. Thus [paps] # 1 and so [ps] # [ps]. Finally, 62 = -2 x 3 x 5
and so (0)* = p3p3p3 so
papsps = (0).
Thus [pa][ps][ps] = 1 s0 [ps] = [p2] " [ps] ™" = [p2][ps].
Thus CI(K) = Cy x Cy. Hence hi = 4.

ExXAMPLE 174. We will work out the class group for K = Q(/—23),
leaving some of the details to you. Note Ox = Z[f] where 6 = (1 +
v/—23)/2 has minimal polynomial X? — X + 6. The Minkowski bound
By &~ 3.05. Thus 20k = pop, and 30, = psp, where

P2 = <27‘9>7 p,2 = <2"9 - 1>> ps = <37 9)7 pg’, = <379 - 1>'
Moreover, py, p5 both have norm 2 and ps, p4 both have norm 3. We

know that the class group is generated by [p2], [p5], P3, P5.
Let’'s a € Ok and write a = = 4 yf with x, y € Z. Then

Norm(a) = Norm((z + y/2) + yv/—23/2) = (2z + y)?/4 + 23y° /4.
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If po = (@) is principal then taking norms we have
(22 +y)* +23y* =8

which is impossible. Similarly p}, ps, ps are not principal. Now let’s
check p2. If p5 = («) is principal then

(27 +y)* + 23y* = 16

which givesus x = +2 and y = 0, so @ = +2. But then 20 = p3 which
we know to be false as poy, p), are distinct prime ideals by Dedekind—
Kummer. We persevere and check p3. Here

Py = (2,0) - (4,20,0%)

(2,0) - (4,26,6 — 6)

(2,6) - (4,20,0 + 2)

= (8,40, 20 + 4,20% 6 + 20)
= (8,46,20 + 4,20 — 12,360 — 6)
=

= (8,

= (

8,460,20 + 4,20 — 12,60 + 6)
8,460,20 + 4,20 — 12,0 — 2)
8,8,8,-8,0 — 2)
—(6-2)
as 8/(6 —2) = —1 — 0 € Ok. We see that [py] is an element of order 3
in CI(K). Moreover,
[p2][p5] = [(2)] =1

o [ph] = [p2]™ = [p2]®. In the same way [ps] = [p3]~']. All that
remains is to relate [po] and [p3]. However,

paps = (6,26, 30,6%)
= (6,0)

= (0)

as 6/0 = 1 — 0. Thus [p3] = [pa] !
generated by [pa].

. Hence CI(K) is cyclic of order 3






CHAPTER 9

Units

1. Revision

Let R be a ring. Recall that a unit in R is an element u such that
uv = 1 for some other v € R. The set of units is denoted by R* and is
a multiplicative group called the unit group of R. For example, if K
is a field then K* = {a € K : a # 0}. But Z* = {1, —1}.

2. Units and Norms

Let K be a number field. We shall denote O}, by U(K) and call it
the unit group of K (even though it is really the unit group of Ok).

PROPOSITION 175. Let K be a number field. Then
U(K) ={a € Ok : Normg/g(a) = £1}.

PROOF. Let u be a unit in Og. By definition there is some v € Ok
such that uv = 1. By the multiplicativity of norms we get Normp /q(u)-
Normg g(v) = 1. But the norm of an algebraic integer is a rational
integer. Thus Normg g(u) = £1.

Conversely, suppose Normg g(a) = £1. Let ay, ..., o, be the con-
jugates of a and recall that

Normg g(a) = aras - - - .
Without loss of generality, o = ;. Let
B =z ap.

Note that the a; do not necessarily belong to K, but f = +1/a € K.
Moreover, the «; are algebraic integers (being conjugates of an algebraic
integer ). Thus f € KN O = Ok. Now « - (1) = 1 showing that «
Is a unit. U

3. Units of Imaginary Quadratic Fields

THEOREM 176. Let K = Q(v/—d) where d is squarefree and d > 0.
Then
(i) If K = Q(i) then U(K) = {+1, +i}.
(ii) If K = Q(v/=3) then U(K) = {£1,4(, (%} where { = (—1+
V=3)/2 = exp(2mi/3).
(iii) In all other cases U(K) = {1, —1}.

T
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PROOF. Suppose first that —d # 1 (mod 4). Then
Ok =2Z-1®Z-V—d.

Let a € Ok. Then a = a + bv/—d where a, b € Z. This is a unit if
and only if Norm(a) = 41 or equivalently a®? +d-b*> = 1. If d > 1 then
b=0and a = *£1,s0 a==£1. If d =1, then a® + b*> = 1 and the only
solutions are (a,b) = (£1,0), (0,41). In this case K = Q(i) and the
units are a + bi = 1, 4.

Suppose now that —d = 1 (mod 4). Then every element of Ok
can be written as a + bv/—d where a, b are both integers or a, b are
both halves of odd integers. If & = a + byv/—d is a unit, and a, b
are both integers, then the argument above tells us that a = =+1.
We consider a = r/2, b = s/2 where 7, s are odd integers. Then
r? +ds?> = 4. As s is odd, we have s> > 1 and so 4 > ds? > d. But
d = 3 (mod 4) and so d = 3. Thus r* + 3s®> = 4. The only solutions
in odd integers are (r,s) = (£1,%1). In this case K = Q(v/—3) and
a= (1 +£+/-3)/2. O

We'll see later that rings of integers of real quadratic fields have
infinitely many units. For now you can check this for Q(v/2).

EXERCISE 177. Show that 1 4 v/2 is a unit of Z[v/2]. Deduce that
Z[+/2] has infinitely many units.

4. Units of Finite Order
Let K be a number field. We define
n(K)={ee€ U(K) : € has finite multiplicative order}.

We call n(K) the torsion unit group of K. For example, from the
previous section we know that

LEMMA 178. n(K) is a finite subgroup of U(K).
PRrROOF. Note U(K) is an abelian group. Thus the set n(K) is in fact
the torsion subgroup of U(K). We need to show that U(K) is finite.

Now if ¢ in U(K) has order m, then ( is a primitive m-th root of unity.
Let wy,...,w, be an integral basis for Ox. Then

(17) ¢ =aw; + -+ apwy
where the a; € Z. Let o4, ...,0, be the embeddings K < C. Thus

n

0i(C) = Z a;oi(w;)

=1
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fori =1,...,n. Let A= (0i(w;)). Then det(A)? = D(wy,...,wy,)?* =
A(wy, ... ,wy,) # 0 by Theorem 75. In particular, A is invertible. Let
A_l = (bz,j) Then

a; = Z bi,jo-i(C)-
i=1
But 0;(¢) is a root of unity so |o;(¢)| = 1, so
;| <C-n
where C' = max|b; ;|. As C and n are fixed, there are only finitely many

possibilities for the integer coeflicients a; in (17). Thus there are only
finitely many possibilities for . This completes the proof. U

THEOREM 179. Let K be a number field. Then n(K) = () where ¢ is

a root of unity.

Warning: Here the notation n(K) = (¢) means that ¢ is a generator
for the multiplicative group n(K). It does not mean that n(K) is a
principal ideal! The set n(K) is not an ideal at all.

PROOF OF THEOREM 179. We know that n(K) is finite by Lemma 178.
By the Fundamental Theorem of Abelian Groups,

n(K)ngGCdzx---xCdr

where dy | dy | -+- | d,. Note that the order of n(K) is d = dids - - - d,,
but every a € n(K) satisfies a” = 1. Thus all elements of n(K) are
roots of X% — 1. But X% — 1 has at most d, roots. Hence

dydy -+ dy = d = #n(K) < d,.

This can only happenisdy =dy = --- =d,_1 = land d = d, = #n(K).
Thus n(K) = C,4 and its elements are in fact the roots of X¢—1. Hence
n(K) = (¢) where ( = exp(2mi/d). O

THEOREM 180. Let K have at least one real embedding o : K — R.
Then n(K) = {1,—1}.

PROOF. Let ¢ be a cyclic generator of n(K). Then (¢ = 1 and thus
o(¢)¢ = 1. The only real roots of unity are +1. Thus ¢(¢)? = 1 and so
o(¢?) = 1. But o is injective (it’s an embedding!) and so (* = 1 and
hence ( = £1. Thus n(K) = {1,—1}. O

5. Dirichlet’s Unit Theorem

THEOREM 181 (Dirichlet’s Unit Theorem). Let K be a number field
of signature (r,s) and write t = r+ s — 1. Then U(K) is a finitely
generated group of rank r + s — 1. More precisely, there are units

€1,...,€ such that every e € U(K) can be written uniquely as
e=w-eley’ et

where w € N(K) and n; € Z.
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ExAMPLE 182. In this example we shall show that the unit group for
K =Q(v2) is

(18) UK)={£(1+V2)":m e Z}

with the help of Dirichlet’s Unit Theorem. Since v/2 has minimal
polynomial X2 — 2 which has two real roots, we see that K has two
real embeddings and no complex ones; in particular K has signature
(2,0). Thus the rank of U(K) ist =2+ 0—1 = 1. Moreover, by
Theorem 180 we know that n(K) = {1,—1}. Thus by Dirichlet’s Unit

Theorem there is some unit e (called €; in the theorem) such that every
unit can be written uniquely as €™ for some m > 1. Thus

(19) U(K) = {®e™ : m e Z}.

Replacing € by €' does not affect (19). Thus we may suppose that
le] > 1.

Now 1 ++/2 € Og = Z[/2] and has norm 1 —2 = —1 and so is a
unit. Thus 1 + \/§ = +€" for some n € Z. Moreover, as 1 + \/5 > 1
and |e|] > 1 we have n > 1. If n = 1 then (18) follows. Thus suppose
n > 2. Write € = a + byv/2 with a, b € Z. Thus

1+V2 = +(a+ b/2)".

To this we apply the embeddings oy, 05 : K < R which are given by
01(u+v\/§) = u + vv/2 and 02(u+v\/§) = u—vy/2 for u, v e Q. We
obtain,

1+V2=4(a+b/2)", 1-v2==4(a—-b/2)"
Hence
o +bV2 <|1L+V2IY" o —bV2] < |1 — V2V

By the triangle inequality
1
b <—<1+\/§1/"—0— 1—\/51/”).
< oo (114 V2 + 1= Ve

We shall need approximate values for 1+ V2 and 1 —+/2. To 1 decimal
place we have

1+vV2|~24..., [1-v2/~04....
As n > 2 we know that
11+ V2| < 14 V212 < (2.5)Y2 < L6,

and
11— V2" < 1.
Thus
b < 1.6+4+1 <1
2v/2

Therefore b = 0. But a? — 20> = Norm(e) = +1. This forces ¢ = a =
+1, giving a contradiction. Thus n = 1 and so (18) holds.
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The number field Q(v/2) is a real quadratic field. The units of
real quadratic fields can be computed rather efficiently using continued
fractions. However the continued fraction method is not useful for
number fields of higher degree.

EXERCISE 183. Let K = Q(\‘Q’/ﬁ) Show that 1, v/2, \3/52 is an integral
basis for Q. Show that
UK)={+(V2—-1)" : ncZ}.

You may need to use WolframAlpha, MATLAB or a similar package to
compute approximations to the embeddings of some algebraic numbers.






CHAPTER 10

Some Diophantine Examples

LEMMA 184. Let a, B be non-zero elements of Ok and suppose aOx =
BOk. Then a = ef for some e € U(K).

PROOF. As aOkg = Ok we have o = e and 8 = ag’ for some &,
e’ € Ok. But then e’ = 1 and so ¢ is a unit. O

LEMMA 185. Let n be a positive integer. Let a, b, ¢ be non-zero ideals
satisfying ab = ¢". Suppose a, b are coprime. Then there are ideals
€1, ¢o such that

a=cy, b =}, €16y = C.

PROOF. As a, b are coprime, they have no common prime ideal divisor.
Let

C=preepy
where the p; are distinct primes. Then

nri

ab = ¢" = p]

nrg

Since a, b have no common prime divisor, we may rearrange the p; so
that pq,...,p, divide a but not b, and py. 1, ..., pxr divide b but not a.
Hence

a=p..- p?’“é’ b= p’l}i@fl o pzr’“.
Letting
a=preops =Pt e
completes the proof. O

EXERCISE 186. Give a counterexample (with K = Q) to show that
Lemma 185 does not hold without the coprimality assumption.

EXAMPLE 187. Determine all solutions to the equation 2% + 2 = 3?3
with x, y € Z.
Answer: There is a standard strategy for solving such problems which
involves factoring in quadratic fields. The field we need for this problem
is K = Q(v/—2). Here O = Z[v/—2|, and CI(K) = {1} (check).
Suppose ¥, y € Z and satisfy 22 + 2 = 3?. If either = or y is even
then both are even and 4 divides 3 — 22 = 2 giving a contradiction.
Thus they’re both odd.

Now
(x + \/—_2)(x — \/—_2) =2,

83
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We shall show that the ideal a = (z + v/=2)Of is the cube of an
ideal. Let b = (z — /=2)Ok and ¢ = yOg. Then ab = ¢*. Let’s
show by contradiction that a and b are coprime. So suppose p be a
prime ideal dividing both a, b. Then p divides (i.e. contains) (z +
V=2) — (z —V2) = 2/=2 = —(v/=2)>. Thus p divides /—20k.
But v/—20k is a prime ideal (you get this from factoring 20y using
Dedekind-Kummer). As non-zero prime ideals are maximal, we get
p = vV—20k. However p | yOf and so Norm(p) | y* and so y is even
giving a contradiction. Hence a, b are coprime.

By Lemma 185 we have a = ¢} for some ideal ¢;. However, C1(K) =
{1} so ¢; is principal, and we may write ¢; = (u + vv/—2)Of for some
u, v € Z. Hence

(z+vV-2)0k = (u+vvV-2)30k.
By Lemma 184 we have
T +vV-2=c¢(u+vv-2)°

where € € U(K) = {£1}. After possibly changing the signs of u, v we
have

T+ vV-2=(u+uvv-2)= (u® - 6uv?) + (3uv — 2v%)v/ 2.
Comparing coefficients of v/—2 we have v(3u*—2v?) = 1. Hence v = +1
and 3u® — 20 = +1. The only solutions are (u,v) = (+1,1). Hence

r = u® — 6uv? = £5. Since 22 + 2 = y3 we see that the only solutions
are (£5,3).

ExXAMPLE 188. Let p be an odd prime and suppose that —23 is a square
modulo p. Show that either p or 2p can be written as 2% + xy + 6y for
some integers x, y.

Answer: The key to this is to spot that 2% + zy + 6y? is a norm.
Indeed, completing the square, we have

z® +zy + 6y° = (z +y/2)* + 23y*/4 = Normp g(z + y0)

where 0 = (1++/—23)/2 and K = Q(v/—23). As —23 =1 (mod 4) we
know that Ok = Z[f]. Hence all we have to do is show that either p or
2p is the norm of some element of O.

Note that [Of : Z[v/—23]] = 2, and so not divisible by p. Thus we
may apply the Dedekind-Kummer Theorem to factor pOy by factoring
X2 + 23 modulo p. We are given that —23 is a square modulo p.
Thus X2 + 23 is the product of two linear factors modulo p and hence
pOg = pp’ where p, p’ are both prime ideals of norm p. If p is principal,
say (z+y0) with z, y € Z, then p = 2%+ 2y +6y? as required. Suppose
p is not principal. We know from Example 174 that the class group
is cyclic of order 3 with the two non-trivial classes being [po] and [p5]
where po, pj are ideals of norm 2. Thus either pop or php is principal.
Thus 2p = 2% + xy + 6y for some z, y € Z.



