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CHAPTER 1

Introduction

These are my notes for the 2018 Algebraic Number Theory module.
They follow the lectures very closely. Thanks to Ben Windsor, Patricia
Ricamara, Emily Olsen, Luke Kershaw, and others for sending correc-
tions.

In addition to the notes you might find it helpful to consult these
textbooks:

• Steward and Tall, Algebraic Number Theory. Newer editions
have the title Algebraic Number Theory and Fermat’s Last
Theorem but old editions are more than adequate. This is
the most basic book.
• Frazer Jarvis, Algebraic Number Theory. Very accessible and

probably most useful.
• Pierre Samuel, Algebraic Theory of Numbers. This is a sophis-

ticated introduction, particularly suited if you’re happy with
Commutative Algebra and Galois Theory.
• Frohlich and Taylor, Algebraic Number Theory. Too long and

thorough. If you find yourself really into the subject you might
want to dip into the chapter on fields of low degree.
• Peter Swinnerton-Dyer, A Brief Guide to Algebraic Number

Theory. Much more sophisticated and concise than the first
two references, and covers lots of advanced topics that we
won’t touch. If Algeraic Number Theory was a 4th year mod-
ule this would probably be the right textbook.
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CHAPTER 2

Number Fields

1. Field Extensions and Algebraic Numbers

Definition. Let K, L be fields. We say that L/K is a field extension
if K is a subfield of L.

For example C/R is a field extension, and so is R/Q.

Definition. Let L/K be an extension and let α ∈ L. We say that α
is algebraic over K if there is a non-zero polynomial g(X) ∈ K[X]
such that g(α) = 0 (that is α is the root of a non-zero polynomial with
coefficients in K).

Example 1. i ∈ C is algebraic over Q as it is a root of X2 +1 ∈ Q[X].
Also 4

√
7 is algebraic over Q as it is a root of . . .

Lemma 2. Let α be algebraic over K.

(i) Then there is a unique polynomial µK,α(X) ∈ K[X] such that
µK,α(α) = 0 and µK,α(X) is irreducible and monic. We call
µK,α(X) the minimal polynomial of α over K.

(ii) If f ∈ K[X] satisfies f(α) = 0 then µK,α | f .

Proof. Let I = {f ∈ K[X] : f(α) = 0}. Check that I ⊆ K[X]
satisfies the following three properties

• 0 ∈ I,
• if f , g ∈ I then f + g ∈ I,
• if f ∈ I and g ∈ K[X] then gf ∈ I.

In other words, I is an ideal of K[X]. As K[X] is a PID we have
I = m ·K[X] (a principal ideal). As α is algebraic we see that I 6= 0.
So m 6= 0. We can scale m so that it’s monic and we let this be µK,α.
Note that (ii) holds: if f(α) = 0 then f ∈ I = µK,α ·K[X] so µK,α | f .

We have to show that µK,α is irreducible. Suppose µK,α = f · g
where deg(f) and deg(g) are smaller than deg(µK,α). Then f(α)g(α) =
µK,α(α) = 0. Without loss of generality f(α) = 0, so by (ii) µK,α | f .
This contradicts deg(f) < deg(µK,α).

We leave it as an excercise to check the uniqueness of µK,α. �

Example 3. We shall write µα instead of µK,α if K is understood. But
it is important to understand that the minimal polynomial depends on
the field. Let

K = Q(
√

2), L = Q(
√

2 + i).

3
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Let α =
√

2 + i. Then
µL,α = X − α

since α ∈ L. Let’s compute µK,α next. Note that

(α−
√

2)2 = −1

which we can rewrite as

(1) α2 − 2
√

2α + 3 = 0.

Thus α is a root of X2 − 2
√

2X + 3 ∈ K[X]. This polynomial is
irreducible over K. If not then its roots belong to K; these are α =√

2+ i and α =
√

2− i. But K ⊂ R which gives a contradiction. Hence
µK,α = X2 − 2

√
2X + 3. Next, from (1)

(α2 + 3)2 = (2
√

2α)2 = 8α2

thus α4−2α2+9 = 0. In other words, α is a root ofX4−2X2+9 ∈ Q[X].
You can check that this is irreducible over Q, so µQ,α = X4− 2X2 + 9.

Definition. Let L/K be an extension and let α ∈ L be algebraic over
K. We define the degree of α over K to be the degree of its minimal
polynomial µα ∈ K[X].

Example 4.
√

2 has degree 2 over Q but degree 1 over R.
By Example 3,

√
2 + i has degree 4 over Q, degree 2 over Q(

√
2)

and degree 1 over Q(
√

2, i).

Definition. α ∈ C is called an algebraic number if α is algebraic
over Q. The degree of α is the degree of µQ,α ∈ Q[X].

Example 5. We will see later that the set of algebraic numbers is in
fact a subfield of C; that is if you add, subtract, multiply or divide
algebraic numbers you get algebraic numbers. For now we content
ourselves with Example 3: we know that

√
2, i are algebraic numbers

and we found that
√

2 + i is a root of X4 − 2X2 + 9 ∈ Q[X] so it is
also an algebraic number. Note that

√
2, i have degree 2 but

√
2 + i

has degree 4.

2. Field Generation

Definition. Let L/K be a field extension and S a subset of L. We
define the extension of K generated by S to be the intersection of
all the subfields of L which contain both K and S; we denote this by
K(S). If S = {α1, . . . , αn} we simply write K(α1, . . . , αn) instead of
K(S).

Lemma 6. K(S) is a subfield of L. It is the smallest subfield of L
containing both K and S.

Proof. Think about it. Here smallest means contained in all the
others. �
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Example 7. If K is a field and S is a subset of K then K(S) = K,
because K contains K and S and it’s the smallest field containing both.

Example 8. R(i) = C.

Example 9. Let d ∈ Q be a non-square (i.e.
√
d is irrational). We

show that

(2) Q(
√
d) = {a+ b

√
d : a, b ∈ Q}.

Let
K = {a+ b

√
d : a, b ∈ Q}.

First we need to show that K is field. The easiest way to do this is to
show that K is a subfield of C. We leave this as an exercise (but you
will need ‘rationalizing the denominator’ trick to show that K is closed
under taking inverses).

We see that K is a field, and that it contains Q and
√
d. Let L

be another field that contains both Q and
√
d. If a, b ∈ Q, then a, b,√

d ∈ L so a + b
√
d ∈ L. Hence K ⊆ L. Thus K is the smallest field

that contains both Q and
√
d, showing that K = Q(

√
d) as required.

We see that Q(
√
d) is an extension of Q.

Example 10. Warning: You should not assume that Q( 3
√
d) is that

same as {a + b 3
√
d : a, b ∈ Q}. The set {a + b 3

√
d : a, b ∈ Q} is not

a field (it’s not closed under multiplication). We’ll come to Q( 3
√
d) in

due course.

3. Algebraic and Finite Extensions

Definition. Let L/K be an extension. We say that L/K is algebraic
if every α ∈ L is algebraic over K.

Example 11. Let d ∈ Q be a non-square as before. The extension
Q(
√
d)/Q is algebraic as every α = a+b

√
d is the root of (X−a)2−b2d ∈

Q[X].

Observe that if L/K is a field extension then L is a vector space
over K.

Definition. We define the degree of L/K to be the dimension of L
as a K-vector space and denote this by [L : K]. We say that L/K is
finite if [L : K] <∞.

Example 12. C has basis 1, i over R, so [C : R] = 2.

Example 13. Q(
√
d) has Q-basis 1,

√
d. Therefore [Q(

√
d) : Q] = 2;

in particular Q(
√
d)/Q is finite.

Example 14. R/Q is an infinite extension. One way to check this is
to prove that any finite dimensional Q-vector space is countable, so R
must be infinite dimensional as a Q-vector space.
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Theorem 15. Let L/K be finite. Then L/K is algebraic.

Proof. Let [L : K] = m <∞. Let α ∈ L. Then 1, α, . . . , αm are m+1
elements in the K-vector space L, and so must be linearly dependent
over K. I.e. there are a0, . . . , am ∈ K not all zero such that

a0 + a1α + · · ·+ amα
m = 0.

Therefore α is a root of the non-zero polynomial a0+a1X+· · ·+amXm ∈
Q[X]. �

4. Simple Extensions

A simple extension K(α)/K is one obtained by adjoining one
element α to the field K. If α is algebraic then it is every easy to
compute the degree of K(α)/K.

Theorem 16. Let L/K be an extension and let α ∈ L be algebraic
over K with minimal polynomial µα ∈ K[X]. Let n = deg(µα). Then

(i) K(α) ∼= K[X]/(µα). More explicitly, the map

K[X]/(µα)→ K(α), h(X) + (µα) 7→ h(α)

is a well-defined isomorphism.
(ii) K(α) has K-basis 1, α, . . . , αn−1. In particular, [K(α) : K] =

deg(µα).

Proof. Define

φ : K[X]→ K(α), φ(f) = f(α).

It is easy to check that this is a homomorphism of rings. Let I be
the kernel of φ. Then I = {f ∈ K[X] : f(α) = 0}. By the proof of
Lemma 2 we recall that I = (µα). We claim that the ideal I is maximal.
Let’s check that. If J is another ideal containing I then J = (f(X))
for some f ∈ K[X] (since K[X] is a PID). Thus µα ∈ I ⊆ J so f | µα.
Therefore f = 1 or f = µα. In the former case we have J = K[X] and
in the latter J = I, showing that I is indeed maximal. Hence K[X]/I
is a field. Now the First Isomorphism Theorem tells us that there is
an isomorphism

φ̂ : K[X]/I → Im(φ).

Therefore Im(φ) is a subfield of K(α). It contains α as φ(X) = α and
it contains K as for an c ∈ K we have φ(c) = c. But K(α) is the
smallest field containing K and α so K(α) = Im(φ). This prove (i).

Let’s prove (ii). If β ∈ K(α) then there β ∈ Im(φ) and so there
is some polynomial f ∈ K[X] such that β = f(α). By the Euclidean
algorithm we have

f = qµα + r, q, r ∈ K[X], deg(r) < deg(µα).
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Thus β = f(α) = r(α). As deg(r) < deg(µα) = n we can write
r = a0 + a1X + · · ·+ an−1X

n−1. So

β = r(α) = a0 + a1α + · · ·+ an−1α
n−1

showing that 1, . . . , αn−1 spans K(α) as a K-vector space. Next we
want to show that it is linearly idependent. Suppose there are b0, b1, . . . , bn−1 ∈
K such that

b0 + b1α + · · ·+ bn−1α
n−1 = 0.

Then g(α) = 0 where g = b0 + b1X + · · ·+ bn−1X
n−1. So g ∈ I = (µα).

Hence µα | g. As deg(g) ≤ n − 1 < deg(µα) we see that g = 0.
So b0, . . . , bn−1 = 0 proving linear independence. This completes the
proof. �

Example 17. Let d ∈ Q be a non-square. Then
√
d has the minimal

polynomial µ√d(X) = X2− d over Q. Theorem 16 now tells us that 1,√
d is a Q-basis for Q(

√
d). Thus

Q(
√
d) = {a+ b

√
d : a, b ∈ Q}.

This is a much better way of obtaining this result than Example 9.
If d ∈ Q is a non-cube (i.e. d 6= c3 for any c ∈ Q) then X3 − d is

irreducible, and is the minimal polynomial of 3
√
d. Therefore

Q(
3
√
d) = {a+ b

3
√
d+ c

3
√
d
2

: a, b, c ∈ Q}.

In fact, if α is an algebraic number of degree n, then its minimal
polynomial over Q has degree n and so 1, α, . . . , αn−1 is a Q-basis for
Q(α), and so

Q(α) = {a0 + a1α + · · ·+ an−1α
n−1 : ai ∈ Q}.

5. Number Fields

Definition. A number field is a finite extension of Q. The degree
of a number field K is the degree [K : Q].

Example 18. Q is the only number field of degree 1 (why?). Thus Q
is the simplest example of a number field.

If d ∈ Q and d is a non-square then Q(
√
d) is a number field of

degree 2. In fact we know thanks to Example 17 that if α is an algebraic
number of degree n then Q(α) is a number field of degree n. We will
see later that if α1, . . . , αm are algebraic numbers then Q(α1, . . . , αm)
is a number field. For this we will need the tower law.

Corollary 19. Let K be a number field. Then every element of K is
an algebraic number.

Proof. By definition K/Q is finite, so by Theorem 15 every element
is algebraic over Q, in other words an algebraic number. �
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6. The Tower Law

Theorem 20. Let K ⊆ L ⊆ M be field extensions of finite degree
(or we could write M/L/K). Let `1, `2, . . . , `r be a basis for L/K and
m1, . . . ,ms be a basis for M/L. Then

(3) {`imj : i = 1, . . . , r, j = 1, . . . , s}

is a basis for M/K. Moreover,

(4) [M : K] = [M : L] · [L : K].

Proof. Observe that

[L : K] = r <∞ [M : L] = s <∞.

Suppose for the moment that (3) is a basis for M/K as claimed in the
statement of the theorem. Then [M : K] = rs = [M : L] · [L : K]
proving (4). Thus all we need to do is prove that (3) is indeed a basis
for M/K.

Let us show first that (3) is linearly independent over K. Thus
suppose aij ∈ K such that

s∑
j=1

r∑
i=1

aij`imj = 0.

We can rewrite this as
s∑
j=1

(
r∑
i=1

aij`i)mj.

Let bj =
∑r

i=1 aij`i for j = 1, . . . , s. Since aij ∈ K ⊆ L and `i ∈ L we
see that bj ∈ L. But

s∑
j=1

bjmj = 0.

As m1, . . . ,ms is a basis for M/L we have

b1 = b2 = · · · = bs = 0.

But

bj =
r∑
i=1

aij`i = 0, j = 1, . . . , s.

As `1, . . . , `r is a basis for L/K and aij ∈ K we have aij = 0 for j =
1, . . . , s and i = 1, . . . , r. This proves that (3) is linearly independent.

Now we show (3) spans M as a vector space over K. Let m ∈ M .
As m1, . . . ,ms is a basis for M/L, we can write

m = b1m1 + · · ·+ bsms
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for some b1, . . . , bs ∈ L. Moreover, as `1, . . . , `r is a basis for L/K
we can express each of the bs as a linear combination of the `s with
coefficients in K:

bj = a1j`1 + · · ·+ arj`r, j = 1, . . . , s;

here aij ∈ K. Thus

m =
s∑
j=1

bjmj =
s∑
j=1

(a1j`1 + · · ·+ arj`r)mj =
s∑
j=1

r∑
i=1

aij`imj .

We’ve shown that any m ∈M can be written as linear combination of
`imj with coefficients in K. This completes the proof. �

7. Number Field Examples

Definition. A quadratic field is a number field of degree 2. A cubic
field is a number field of degree 3. A quartic field . . .

Lemma 21. Let K be a quadratic field. Then K = Q(
√
d) where d is

a squarefree integer, and d 6= 0, 1.

Proof. As [K : Q] = 2 we have K 6= Q and so there is some θ ∈ K\Q.
Now 1, θ, θ2 are linearly dependent over Q and so there are u, v, w ∈ Q
not all zero such that

u+ vθ + wθ2 = 0.

If w = 0 then θ ∈ Q giving a contradiction. Thus w 6= 0. Thus

θ =
−v ±

√
∆

2w
, ∆ = v2 − 4uv.

Note that ∆ is not a square in Q, since θ does not belong to Q. Re-
arranging we see that

√
∆ ∈ K. Thus [Q(

√
∆) : Q] 6= 1 and di-

vides [K : Q] = 2 by the tower law. Thus [K : Q(
√

∆)] = 1 and so

K = Q(
√

∆). Now write

∆ =
a

b
=

1

b2
· ab

where a, b are coprime integers. Let c = ab which will be an integer
but a non-square. Then K = Q(

√
c). Finally write c = de2 where d is

squarefree and 6= 0, 1. Then K = Q(
√
d). �

Example 22. Q(
√
−1/3) = Q(

√
−12) = Q(

√
−3).

Example 23. Recall that the cube roots unity are 1, ζ, ζ2 where
ζ = exp(2πi/3) and their sum is zero. Thus ζ is a root of X2 +X + 1
which is irreducible. In particular this is the minimal polynomial for
ζ. Hence Q(ζ) is a quadratic field. The proof of the lemma tells us

how to write Q(ζ) = Q(
√
d) where d is a squarefree integer 6= 0, 1.

Specifically we find that the discriminant of X2 + X + 1 is ∆ = −3.
This is already a squarefree integer, so Q(ζ) = Q(

√
−3).
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Definition. Let n be a positive integer and ζn = exp(2πi/n). We call
Q(ζn) the n-th cyclotomic field. Note that Q(ζn) is an example of a
number field (why?).

Exercise 24. Show that [Q(ζp) : Q] = p − 1. For this you will have
to revise the section on Eisenstein’s criterion in your Algebra II notes.

Example 25. We saw that every quadratic field has the form Q(
√
d)

thanks to the quadratic formula. It is not true that every cubic field
has the form Q( 3

√
d). For example, let θ be a root of X3 +X+1 (which

is irreducible over Q). Then Q(θ) is a cubic field. Can you show that

Q(θ) 6= Q( 3
√
d) for any d? This question is a little hard right now but

we’ll come back to it later.

8. Extended Example Q(
√

5,
√

6)

We shall evaluate [Q(
√

5,
√

6) : Q]. Write L = Q(
√

5), M =
Q(
√

5,
√

6) = L(
√

6). By the tower law,

[M : Q] = [L : Q][M : L] .

The polynomial x2−5 is monic, irreducible over Q and has
√

5 as a root.
Therefore it is the minimal polynomial for

√
5 over Q. By Theorem 16,

we have 1,
√

5 is a Q-basis for L over Q. In particular, [L : Q] = 2.
We want to compute [M : L]. As M = L(

√
6), we need a minimal

polynomial for
√

6 over L. Now
√

6 is a root of x2 − 6. We want to
know if x2 − 6 is irreducible over L = Q(

√
5). Suppose it isn’t. Then,

as it is quadratic, its roots must be contained in L. So
√

6 = a + b
√

5
for some a, b ∈ Q. Squaring both sides, and rearranging, we get

(a2 + 5b2 − 6) + 2ab
√

5 = 0.

As 1,
√

5 are linearly independent over Q,

a2 + 5b2 − 6 = 2ab = 0.

Thus either a = 0, b =
√

6
5

or b = 0, a =
√

6, in either case contra-

dicting a, b ∈ Q. Hence
√

6 /∈ L, and x2 − 6 is irreducible over L. It
follows that x2 − 6 is the minimal polynomial for

√
6 over L. Hence

[M : L] = 2 and so by the tower law, [M : Q] = 2× 2 = 4.
We can also write a Q-basis for M = Q(

√
5,
√

6) over Q. By the
above 1,

√
5 is a basis for L over Q. Also, as x2 − 6 is the minimal

polynomial for
√

6 over L, we have (Theorem 16) that 1,
√

6 is a basis
for L(

√
6) = M over L. The tower law (Theorem 20) tells us

1,
√

5,
√

6,
√

30

is a basis for M over Q. Note that M is a number field: that is M is
a finite extension of Q.
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We’ll go a little further with the example, and in fact show that
M = Q(

√
5 +
√

6) (thus M is a simple extension of Q). Let α =√
5 +
√

6. Since α ∈M it follows that Q(α) ⊆M . To show M = Q(α)
it is enough to show that Q(α) ⊇ M . For this it is enough to show
that

√
5 ∈ Q(α) and

√
6 ∈ Q(α). Note that

(α−
√

5)2 = 6,

which gives

(5) α2 + 5− 2
√

5α = 6.

Rearranging
√

5 =
α2 − 1

2
∈ Q(α).

Similarly
√

6 ∈ Q(α) as required. Hence M = Q(α).

Finally, we will write down a minimal polynomial µα for α over Q.
Since M/Q has degree 4, we know from (iii) that we are looking for a
monic polynomial of degree 4. Rearranging (5) we have α2−1 = 2

√
5α.

Squaring both sides and rearranging, we see that α is the root of

f = x4 − 22x2 + 1.

Do we have to check if f is irreducible? Normally we do, but not here.
Observe that µα | f (as f(α) = 0) and they both have degree 4. So
µα = f .

9. Another Extended Example

Definition. Let f ∈ Q[x] and let α1, . . . , αn be the roots of f in C.
Then Q(α1, . . . , αn) is called the splitting field of f .

In this example we will compute the degree of the splitting field of
f = x3−5 over Q. The splitting field of f over Q is the field we obtain
by adjoining to Q all the roots of f . The three roots of f are

θ1 =
3
√

5, θ2 = ζ
3
√

5, θ3 = ζ2
3
√

5,

where ζ is a primitive cube root of 1. The splitting field is therefore
Q(θ1, θ2, θ3).

Let

K = Q(θ1), L = K(θ2) = Q(θ1, θ2), M = L(θ3) = Q(θ1, θ2, θ3).

By the tower law

[M : Q] = [K : Q][L : K][M : L].

As x3 − 5 is irreducible over Q, we have [K : Q] = 3. To calculate
[L : K] we need to know the degree of the minimal polynomial of θ2
over K. Note that θ2 is a root of f = x3 − 5. However, f is not the
minimal polynomial of θ2 over K. Indeed, as 3

√
5 ∈ K, we have

f = (x− 3
√

5) · g
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where g ∈ K[x] is monic and quadratic. Thus θ2 is a root of g. Is g
reducible over K? As g is quadratic, if it is reducible over K it would
mean that θ2 ∈ K. However, θ2 = ζ 3

√
5 /∈ R and K = Q( 3

√
5) ⊂ R.

Therefore θ2 /∈ K, and so g is irreducible over K. It follows that g is
the minimal polynomial of θ2 over K. Hence [L : K] = 2.

Finally, we want [M : L]. Now, θ3 is also a root of g. As g is
quadratic and has one root in L (specifically θ2) its other root must be
in L. Thus θ3 ∈ L, and so M = L(θ3) = L, and hence [M : L] = 1.
Hence [M : Q] = 3 × 2 × 1 = 6. Note that M is a number field: that
is M is a finite extension of Q.

10. Extensions of Number Fields

Lemma 26. Let L be a finite extension of a number field K. Then L
is also a number field.

Proof. By the tower law [L : Q] = [L : K][K : Q] <∞. �

Theorem 27. Let α1, . . . , αn be algebraic numbers. Then K = Q(α1, . . . , αn)
is a number field. Coversely, any number field K can be written in the
form K = Q(α1, . . . , αn) where the αi are algebraic numbers.

Proof. Recall that any element of a number field is an algebraic num-
ber. The converse part of the theorem is easy: if K is a number field
and α1, . . . , αn is a basis then K = Q(α1, . . . , αn).

Suppose α1, . . . , αn are algebraic numbers and letK = Q(α1, . . . , αn).
We want to show that K is a number field. That is K is a finite ex-
tension of Q. Let

K0 = Q, K1 = K0(α1), K2 = K1(α2), . . .

Then Kn = K. By the tower law

[K : Q] = [K1 : K0] · [K2 : K1] · · · · · [Kn : Kn−1].

So it is sufficient to show that [Ki+1 : Ki] <∞. But Ki+1 = Ki(αi+1).
So all we need, by Theorem 16, is to show that αi+1 is algebraic over
Ki. But αi+1 is an algebraic number, so is that root of a non-zero
polynomial f ∈ Q[X] and Q ⊆ Ki so f ∈ Ki[X]. Hence αi+1 is
algebraic over Ki completing the proof. �

11. The field of algebraic numbers

Theorem 28. Let α, β ∈ C be algebraic numbers. Then α+ β, α− β,
α ·β and α/β are algebraic numbers (where for the last one, we suppose
β 6= 0).

Proof. Consider Q(α, β). This is a number field by Theorem 27.
Every element of a number field is an algebraic number by Corollary 19.
But α+β, α−β, α·β and α/β all belong to Q(α, β), so they’re algebraic
numbers. �
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Example 29. You should take a moment to consider how incredible
this theorem is. For example if α is a root of

X106 + 3X9 + 5X8 − 11X4 + 72

and β is a root of

X99999 + 7777X − 11111

35353535
then there is a monic polynomial with rational coefficients having α+β
as a root. It might be an extremely hard computational problem to
write down this polynomial (what would you guess its degree to be?)
but the theorem tells us that it exists!

Exercise 30. Let α be a non-zero algebraic number with minimal
polynomial

µα(X) = Xn + cn−1X
n−1 + · · ·+ c0 ∈ Q[X].

Write down the minimal polynomial for β = 1/α.

Definition. We let

Q = {α ∈ C : α is an algebraic number}.
We call Q the field of algebraic numbers.

Theorem 31. Q is a field.

Proof. This immediate from Theorem 28. �

Warning: Q is not a number field. Why?
Note that Q is countable, but C is uncountable. This is tells us that

that there are lots of complex numbers that aren’t algebraic. Such num-
bers are called transcendental. Examples of transcendental numbers
are e and π, though this is not easy to prove.

12. Norms and Traces

Let K be a number field and α ∈ K. We define

mK,α : K → K, mK,α(θ) = α · θ.
We usually write mα if the field K is understood. This mα is not
usually a homomorphism of fields (why?). But think of K as a Q-
vector space. Then mα is a linear transformation. If α 6= 0 then it is in
fact injective and surjective, and therefore an isomorphism of K with
itself as a Q-vector. We define the trace of α as

TraceK/Q(α) = Trace(mα) ∈ Q
and we define the norm of α as

NormK/Q(α) = Det(mα) ∈ Q.
The following lemma tells us how to compute traces and norms in

a quadratic field.
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Lemma 32. Let d be a squarefree integer 6= 0, 1. Let K = Q(
√
d). Let

a, b ∈ Q. Then

TraceK/Q(a+ b
√
d) = 2a, NormK/Q(a+ b

√
d) = a2 − b2d.

Proof. Let α = a + b
√
d. We want to work out the trace and the

determinant of the linear transformation mα. Recall that the trace and
determinant of a linear transformation are the trace and determinant
of its matrix with respect to any basis. We choose the basis 1,

√
d for

K. Then

mα(1) = a · 1 + b ·
√
d, mα(

√
d) = (a+ b

√
d) ·
√
d = bd · 1 + a ·

√
d.

Thus the matrix of mα with respect to this basis is

(6) Mα =

(
a bd
b a

)
.

It follows that TraceK/Q(α) = Trace(Mα) = 2a and NormK/Q(α) =
Det(Mα) = a2 − bd2 as required. �

Proposition 33. Let α, β ∈ K. Then

TraceK/Q(α + β) = TraceK/Q(α) + TraceK/Q(β),

NormK/Q(αβ) = NormK/Q(α) NormK/Q(β).

In other words, trace is additive and norm is multiplicative.

Proof. Observe that mα+β = mα + mβ and mαβ = mαmβ. The
proposition follows from the properties of traces and determinants of
linear transformations. �

Exercise 34. Let f = X3 + 2X + 2. Show that f is irreducible.
Let θ be a root of f and let K = Q(θ). Compute TraceK/Q(θ2) and
NormK/Q(θ2).

Exercise 35. Let d 6= 0, 1 be a cube-free integer. Compute the trace

and norm of a+ b 3
√
d+ c 3

√
d
2

with a, b, c ∈ Q.

13. Characteristic Polynomials

Definition. Let K be a number field and α ∈ K. We write χK,α ∈
Q[X] for the characteristic polynomial of mK,α. We call this the char-
acteristic polynomial of α.

Example 36. Recall that the characteristic polynomial of a linear
transformation is the characteristic polynomial of its matrix with re-
spect to any basis. Let’s use this to work out the characteristic polyno-
mial of α = a+b

√
d in Q(

√
d) (where a, b ∈ Q as usual). We computed

above the matrix Mα for mα with respect to the basis 1,
√
d; this is

given in (6). Thus the characteristic polynomial is

χK,α =

∣∣∣∣X − a −bd
−b X − a

∣∣∣∣ = (X − a)2 − db2 = X2 − 2aX + (a2 − db2).
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Note that χK,α(α) = 0. Is this a coincidence? No, it turns out to be
always true. Moreover it has the form X2−Trace(α)X + Norm(α). Is
this a coincidence?

Theorem 37. Let K be a number field and α ∈ K.

(i) deg(χK,α) = [K : Q].
(ii) Write

χK,α = Xn + an−1X
n−1 + · · ·+ a0.

Then

Trace(α) = −an−1, Norm(α) = (−1)na0.

(iii) χK,α(α) = 0.

Proof. Let n = [K : Q]. Recall that χK,α is the characteristic polyno-
mial of mα and thus the characteristic polynomial of an n× n matrix.
This gives (i).

For part (ii) we want Trace(mα) = −an−1 and Det(mα) = (−1)na0.
These are standard linear algebra facts, but let’s go through them.
By definition χK,α(X) = Det(XIn −Mα) where Mα is the matrix for
mα with respect to any basis. Now taking X = 0 we obtain a0 =
Det(−Mα) = (−1)n Det(Mα) = (−1)n Norm(α). Moreover if λ1, . . . , λn
are the eigenvalues of mα, then

Xn + an−1X
n−1 + · · ·+ a0 = χK,α(X) =

n∏
i=1

(X − λi).

Comparing the coefficients of Xn−1 we get

an−1 = −λ1 − · · · − λn = −Trace(mα) = −Trace(α).

For the final part we apply the Cayley–Hamilton Theorem. This
tells us that χK,α(mα) = 0. Thus

mn
α + an−1m

n−1
α + · · ·+ a0 = 0.

Apply both sides to 1 ∈ K and recall that mα(1) = α · 1 = α. So

αn + an−1α
n−1 + · · ·+ a0 = 0,

This gives part (iii) of the theorem. �

Lemma 38. Let K = Q(α) be a number field. Then χK,α = µQ,α.

Proof. This is easy. Both polynomials are monic of the same degree
[Q(α) : Q]. Moreover, as χK,α(α) = 0 we know that µQ,α | χK,α.
Therefore they must be equal. �

Example 39. The lemma gives us an easy way of computing norms
and traces of α when K = Q(α). For example let α be a root of
X3−2X−2, which you can check is irreducible over Q. Let K = Q(α).
Then χK,α = µQ,α = X3 − 2X − 2. From the coefficients,

TraceK/Q(α) = 0, NormK/Q(α) = (−1)3 ×−2 = 2.
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Lemma 40. Let K ⊂ L be number fields. Let α ∈ K. Then

χL,α(X) = χK,α(X)[L:K].

In particular, if K = Q(α) then

χL,α(X) = µQ,α(X)[L:K].

Example 41. Before launching in the proof of Lemma 40 let try an
example. Take α = a + b

√
5 (with a, b ∈ Q) inside L = Q(

√
5,
√

6).
Recall that a basis for L/Q is 1,

√
5,
√

6,
√

5
√

6. Then

α · 1 = a · 1 +b ·
√

5 + 0 ·
√

6 +0 ·
√

5
√

6

α ·
√

5 = 5b · 1+a ·
√

5 + 0 ·
√

6 +0 ·
√

5
√

6

α ·
√

6 = 0 · 1 +0 ·
√

5 + a ·
√

6 +b ·
√

5
√

6

α ·
√

5
√

6 = 0 · 1 +0 ·
√

5 + 5b ·
√

6+a ·
√

5
√

6

Thus the matrix for α with respect to this basis is

M ′ =


a 5b 0 0
b a 0 0
0 0 a 5b
0 0 b a


This has the form

M ′ =

(
M 0
0 M

)
where M is the matrix for mα : Q(

√
5) → Q(

√
5) with respect to the

basis 1,
√

5. Thus

χL,α = Det(XI4 −M ′) = Det(I2 −M)2 = χ2
K,α = ((X − a)2 − 5b2)2

where K = Q(
√

5).

Proof of Lemma 40. Let θ1, . . . , θn be a basis for K/Q and let Mα

be the matrix for mα : K → K with respect to this basis. Let
φ1, φ2, . . . , φm be a basis for L/K. By the tower law, a basis for L/Q
is

θ1φ1, θ2φ1, . . . , θnφ1, θ1φ2, θ2φ2, . . . , θnφ2, . . .

The matrix for α with respect to this basis is
Mα 0 0 · · · 0
0 Mα 0 · · · 0
...

. . .
...

0 0 0 · · · Mα


Thus

χL,α(X) = det(XIn −Mα)m = χK,α(X)[K:Q].

�
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Example 42. Let f = X3 + X + 1. Check that this is irreducible
(easy!). Let θ be a root of f and let K = Q(θ) so that [K : Q] = 3 and
1, θ, θ2 is a basis for K/Q. Let α = 1 + θ + θ2. We will determine the
minimal polynomial for α over Q. Note that

mα(1) = 1 + θ + θ2

mα(θ) = θ + θ2 + θ3 = −1 + θ2

mα(θ2) = −θ + θ3 = −1− 2θ.

Thus the matrix for mα with respect to this basis is

Mα =

1 −1 −1
1 0 −2
1 1 0

 .

Thus

χα(X) = Det(XI3 −Mα) = X3 −X2 + 4X − 3.

By Lemma 40 this equals µα or µ3
α depeding on whether [K : Q(α)]

has degree 1 or 3. But we can see that χα is not a cube; for example
the constant coefficient is not a cube. Therefore µα = χα = X3−X2 +
4X − 3.

There are other ways of concluding the argument. For example if
χα = µ3

α then µα must be linear and so α ∈ Q. In this case θ is a root
of X2 +X + 1−α ∈ Q[X] which contradicts the fact that the minimal
polynomial of θ is cubic.

Example 43. Theorem 37 tells us that we can read the trace and the
norm from the characteristic polynomial. Here is an example.

Let p be an odd prime and let ζ = exp(2πi/p). Let

Φ(X) = Xp−1 +Xp−2 + · · ·+ 1 =
Xp − 1

X − 1
.

You know from Algebra II that Φ is irreducible (since Φ(X + 1) is
Eisenstein). The roots of Φ(X) are ζ, ζ2, . . . , ζp−1, so it is the minimal
polynomial of all of them (note that these are conjugates). Let K =
Q(ζ) (this is the p-th cyclotomic field), which is the splitting field for
Φ(X). Then [K : Q] = p − 1. As the degree of the field is equal to
the degree of the minimal polynomial of ζ, ζ2, . . . , ζp−1 we see that it
is also the characteristic polynomial for all of them, and we may read
off (from the coefficient of Xp−2):

TraceK/Q(ζ i) = −1, i = 1, 2, . . . , p− 1.

From the constant coefficient we get

NormK/Q(ζ i) = (−1)p−1 · 1 = 1, i = 1, 2, . . . , p− 1.

Let’s compute NormK/Q(ζ i−ζj). If i ≡ j (mod p) then ζ i = ζj and
the desired norm is 0. Thus suppose i 6≡ j (mod p) and let k = i− j.
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Then

NormK/Q(ζ i − ζj) = Norm(ζj) Norm(ζk − 1) = Norm(ζk − 1).

Now ζk is one of the roots of Φ(X). Thus ζk − 1 is one of the roots of

Φ(X + 1) = (X + 1)p−1 + (X + 1)p−2 + · · ·+ 1 = Xp + · · ·+ p.

We don’t really care about the other coefficients, just that the polyno-
mial is monic and that the constant coefficient is p. As this is irreducible
and of degree p− 1 it is the characteristic polynomial of ζk − 1. From
the constant coefficient we have

NormK/Q(ζ i − ζj) = Norm(ζk − 1) = (−1)p−1p = p.

Exercise 44. Let K ⊂ L be number fields. Let α ∈ K. Show that

TraceL/Q(α) = [L : K]·TraceK/Q(α), NormL/Q(α) = NormK/Q(α)[L:K].

Hint: See the proof of Lemma 40.



CHAPTER 3

Embeddings of a Number Field

1. Homomorphisms of Fields

Lemma 45. Any homomorphism of fields σ : K → L must be injective.

Proof. Indeed, the kernel of σ is an ideal of K and as K is a field its
ideals are 0 and K. But the kernel cannot be K since σ(1) = 1. So
ker(σ) = 0 and hence σ is injective. �

If σ : K → L is a homomorphism of fields then we write σ :
K ↪→ L. The hooked arrow is intended to allow us to think of K as
homomorphically embedded inside L.

If σ : K ↪→ L is a homomorphism of fields and f = anX
n + · · ·+

a0 ∈ K[X] then we write σ(f) = σ(an)Xn + · · · + σ(a0) ∈ L[X]. In
other words we apply σ to the coefficients of f .

Exercise 46. With σ as above check that σ : K[X] → L[X] is an
injective ring homomorphism. If σ : K ↪→ L is an isomorphism then
σ : K[X]→ L[X] is an isomorphism.

Lemma 47. Let σ : K → L be an isomorphism of number fields. Let
α ∈ C be a root of f ∈ K[X] where f is irreducible over K. Let β ∈ C
be a root of σ(f). Then there is a unique isomorphism

τ : K(α)→ L(β)

such that τ |K = σ and τ(α) = β.

Proof. Let’s show uniqueness first. Recall that every element of K(α)
can be written as a linear combination a0 +a1α+ · · ·+an−1α

n−1 where
ai ∈ K, and n = deg(f). Thus

τ(a0 + a1α + · · ·+ an−1α
n−1) = τ(a0) + τ(a1)τ(α) + · · ·+ τ(an−1)τ(α)n−1

= σ(a0) + σ(a1)τ(α) + · · ·+ σ(an−1)τ(α)n−1.

Thus τ is determined by σ and τ(α) and so if it exists must be unique.
Let’s show the existence of τ . Write I = (f). By Theorem 16 we

have an isomorphism

φ : K[X]/I → K(α), φ(h+ I) = h(α).

Now σ induces an isomorphism K[X]→ L[X] which we also denote by
σ. As f ∈ K[X] is irreducible so is g = σ(f) ∈ L[X]. Write J = (g) for
the principal ideal of L[X] generated by g. We obtain an isomorphism

σ̂ : K[X]/I → L[X]/J

19
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which sends h + I to σ(h) + J . Again by Theorem 16 we have an
isomorphism

ψ : L[X]/J → L(β), ψ(h+ J) = h(β).

We take τ to be the composition of isomorphisms

K(α)
φ−1

−−→ K[X]/I
σ̂−→ L[X]/J

ψ−→ L(β).

You can check by writing out the maps explicitly that τ |K = σ and
τ(α) = β. �

Example 48. Let ι : Q → Q be the identity. Let d 6= 0, 1 be a
squarefree integer and let f = X2−d. Then ι(f) = f . Let α =

√
d and

β = −
√
d. Note that Q(α) = Q(β) = Q(

√
d). By Lemma 47, there is

a unique homomorphism τ : Q(
√
d) → Q(

√
d) satisfying τ |Q = ι and

τ(α) = β. Thus τ(a+ b
√
d) = a− b

√
d with a, b ∈ Q.

Exercise 49. Let d ∈ Q be a non-cube and let ζ = exp(2πi/3). Show
that the map

τ : Q(
3
√
d)→ Q(ζ

3
√
d)

given by

τ(a+ b
3
√
d+ c

3
√
d
2
) = a+ bζ

3
√
d+ cζ2

3
√
d
2

is an isomorphism of fields.

2. Embeddings into C

Definition. Let K be a number field. An embedding of K is a
homomorphism σ : K ↪→ C.

Recall that any number field K contains Q as a subfield.

Lemma 50. Let σ : K ↪→ C be an embedding. Then σ(a) = a for all
a ∈ Q.

Proof. Since σ(0) = 0 and σ(1) = 1 we have

σ(n) = σ(1 + · · ·+ 1) = σ(1) + · · ·+ σ(1) = n

for any natural number n. Moreover σ(−n) = −σ(n) = −n, so σ(m) =
m for all integers m. Finally σ(m/n) = σ(m)/σ(n) = m/n. �

Example 51. Recall that Q is the most basic example of a number
field. By the above lemma it has precisely one embedding which is
σ : Q ↪→ C, σ(a) = a.

We will see later that the number of distinct embeddings of a num-
ber field K is equal to its degree, but at least we can see that this is
true for Q.
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Example 52. Let d be a squarefree integer 6= 0, 1 and let K = Q(
√
d)

(which we now know as a quadratic field). Every element of K can be

uniquely written as a + b
√
d where a, b ∈ Q. If σ : K ↪→ C is an

embedding then

σ(a+ b
√
d) = σ(a) + σ(b)σ(

√
d) = a+ bσ(

√
d).

So σ is really determined once we know what
√
d is. But

√
d
2

= d ∈ Q
so σ(

√
d)2 = σ(d) = d. Hence σ(

√
d) = ±

√
d. Thus we get two possible

embeddings: σ1, σ2 : K ↪→ C defined by

σ1(a+ b
√
d) = a+ b

√
d, σ2(a+ b

√
d) = a− b

√
d a, b ∈ Q.

We say possible embeddings because we should really check that these
are homomorphisms, which isn’t hard.

Lemma 53 (The separability lemma). Let K be a number field and
σ : K ↪→ C be an embedding of K. Let f ∈ K[X] an irreducible
polynomial of degree d. Then σ(f) has d distinct roots in C.

Proof. Let f ′ be the derivative of f which also belongs to K[X]. As f
is irreducible and f ′ has smaller degree than f we see that gcd(f, f ′) =
1. As K[X] is Euclidean, there are polynomials h1 and h2 ∈ K[X] such
that

(7) h1(X)f(X) + h2(X)f ′(X) = 1.

Write g = σ(f) and note that g′ = σ(f ′). Let k1 = σ(h1) and k2 =
σ(h2). Applying σ to both sides of (7) gives

(8) k1(X)g(X) + k2(X)g′(X) = 1.

If α ∈ C is a root of σ(f) = g of multiplicity at least 2 then

g(X) = (X − α)2m(X), m(X) ∈ C[X].

But then

g′(X) = (X − α)2m′(X) + 2(X − α)m(X)

so g′(α) = 0. Substituting α in both sides of (8) gives 0 = 1 which is
a contradiction. �

3. The Primitive Element Theorem

Theorem 54 (The Primitive Element Theorem). Let L/K be an ex-
tension of number fields. Then L = K(γ) for some γ ∈ L.

Note that the theorem says that every extension of number fields is
simple. We call γ a primitive element. To prove the primitive element
theorem we first need the following lemma.

Lemma 55. Let L = K(α, β) be an extension of number fields. Then
there is some γ ∈ L such that L = K(γ).
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Proof. Let f , g be the minimal polynomials of α and β over Q. We
know that these have distinct roots in C by the Separability Theorem.
Let α1, . . . , αm be the roots of f and let β1, . . . , βn be the roots of g.
We may suppose α = α1 and β = β1. Note that the equation

αi + cβj = α + cβ

has exactly one solution c if j 6= 1. As K is infinite, we may choose
c ∈ K such that

αi + cβj 6= α + cβ

for all j 6= 1 and all i. We let γ = α+ cβ. We will show that L = K(γ)
as required. For this it is enough to show that β ∈ K(γ) as α = γ− cβ
and c ∈ K.

Let M = K(γ) and consider µM,β, the minimal polynomial of β
over M . The polynomial h = f(γ − cX) has coefficients in M and β
is a root. Thus µM,β | h. Moreover µM,β | g (as g(β) = 0). Let β′ be
a root of µM,β in C. Then β′ = βj. Thus h(βj) = 0 so g(γ − cβj) = 0
so γ − cβj = αi. Thus αi + cβj = γ = α + cβ. By our choice of
c we have β′ = βj = β. Therefore the only complex root of µM,β

is β. Moreover, by the separability lemma it does not have multiple
roots. Thus µM,β = X − β. But µM,β ∈ M [X] so β ∈ M = K(γ) as
required. �

Proof of the Primitive Element Theorem. This is now an easy
exercise using Lemma 55. �

Exercise 56. Let d1, d2 be distinct squarefree integers 6= 0, 1. Show
that Q(

√
d1,
√
d2) = Q(

√
d1 +
√
d2), by following the steps of the proof

of Lemma 55.

4. Extending Embeddings

Let L/K be an extension of number fields and σ : K ↪→ C, τ : L ↪→
C be embeddings. We say that τ extends σ if τ |K = σ.

Theorem 57. Let K be a number field and M = K(α) where α is
algebraic over K. Let σ : K ↪→ C be an embedding. Let µα be the
minimal polynomial of α over K and let α1, . . . , αn be the roots of
σ(µα) in C.

(i) Then there are precisely n = [M : K] embeddings of τi : M ↪→
C (i = 1, . . . , n) extending σ.

(ii) These are specified by letting τi(α) = αi.

Proof. Let L = σ(K). Then we can think of σ as an isomorphism
σ : K → L. Let µα be the minimal polynomial of α and α1, . . . , αn
be the roots of σ(µα). Here n = deg(µα) = [M : K] and the roots are
distinct by the separability lemma. Lemma 47 now gives isomorphisms
τi : M → L(αi) such that τi|K = σ and τi(α) = αi. Moreover as
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L(αi) ⊂ C we can think of τi as an embedding τi : M → C. These
embeddings are distinct as the αi are distinct.

To complete the proof we must show that there no more embed-
dings. Let

µα(X) = a0 + a1X + · · ·+ anX
n, ai ∈ K.

Let τ : M ↪→ C be an extension of σ. Now µα(α) = 0 so

a0 + a1α + · · ·+ anα
n = 0.

Apply τ to both sides, and recall that τ(ai) = σ(ai) since ai ∈ K:

σ(a0) + σ(a1)τ(α) + · · ·+ σ(an)τ(α)n = 0.

Thus τ(α) is one of the roots of σ(µα). In otherwords τ(α) and these
are α1, . . . , αn. This completes the proof. �

Example 58. Let K = Q( 3
√

2). Compute the embeddings K ↪→ C.

Answer. Write θ = 3
√

2. Recall that

K = {a+ bθ + cθ2 : a, b, c ∈ Q}.
If τ : K ↪→ C is an embedding then it extends the trivial embedding
ι : Q ↪→ C (here trivial means ι(a) = a for all a ∈ Q). The minimal
polynomial of θ is X3 − 2. The complex roots of ι(X3 − 2) = X3 − 2
are θ, ζθ, ζ2θ where ζ = exp(2πi/3). Thus the embeddings τi : K ↪→ C
satisfy τ1(θ) = θ, τ2(θ) = ζθ and τ3(θ) = ζ2θ. Thus

τ1(a+ bθ + cθ2) = a+ bθ + cθ2

τ2(a+ bθ + cθ2) = a+ bζθ + cζ2θ2

τ3(a+ bθ + cθ2) = a+ bζ2θ + cζθ2.

Exercise 59. Let σ : Q(
√

5) ↪→ C be given by σ(a+ b
√

5) = a− b
√

5.
Explicitly write down the embeddings τ : Q(

√
5,
√

6) ↪→ C that extend
σ.

Theorem 60. A number field K has [K : Q] embeddings.

Proof. This follows from Theorem 57 and the Primitive Element The-
orem. �

5. Real and Complex Embeddings; Signature

It is easy to check that if σ : K ↪→ C is an embedding then σ
defined by

σ : K ↪→ C, σ(α) = σ(α)

is also an embedding. Note that σ = σ if and only if σ(K) ⊂ R in which
case we say σ is a real embedding. Otherwise if σ(K) 6⊂ R we say
that σ is a complex embedding; in this case σ 6= σ. We usually talk of
pairs of complex embeddings, since the complex embeddings come
in conjugate pairs.
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Theorem 61. Let K be a number field. Let σ1, . . . , σr be its real em-
beddings. Let σr+1, . . . , σr+s, σr+1, . . . , σr+s be its complex embeddings.
Then [K : Q] = r + 2s.

Proof. This follows from Theorem 60. �

We refer to the pair of non-negative integers (r, s) as the signature
of K.

Exercise 62. Let K = Q(α) be a number field and let µα be the
minimal polynomial of α. Let (r, s) be the signature of K. Show that

(i) r is the number of real roots of µα.
(ii) s is the number of pairs of complex conjugate (non-real) roots

of µα.
(iii) What is the signature of Q(

√
d)?

(iv) What is the signature of Q( 3
√
d)?

Example 63. Let K = Q(
√

1 +
√

2). We will determine the degree
and signature of K. Write

α =

√
1 +
√

2.

Then

α2 − 1 =
√

2

so

(α2 − 1)2 − 2 = 0.

Thus α is a root of

f = (X2 − 1)2 − 2 = X4 − 2X2 − 1.

You can check that is irreducible directly and so [K : Q] = 4. We’ll
adopt a slightly less ‘brute force’ approach. We know that [K : Q] ≤ 4
since α is a root of f . We also know that Q(

√
2) ⊆ K. Thus by the

tower law 2 | [K : Q] and so [K : Q] = 2 or 4. If [K : Q] = 2 then
[K : Q(

√
2)] = 1 and so K = Q(

√
2). In particular α ∈ Q(

√
2). Now

α2 = 1 +
√

2. Taking norms we have

NormQ(
√
2)/Q(α)2 = NormQ(

√
2)/Q(1 +

√
2) = −1

giving a contradiction. Thus [K : Q] = 4 and so f is irreducible. In
particular, it is the minimal polynomial of α. Let β be any root of f .
Then

(β2 − 1)2 = 2

and so the four complex roots of f are

α1 =

√
1 +
√

2, α2 = −
√

1 +
√

2, α3 =

√
1−
√

2, α4 = −
√

1−
√

2.

The four embeddings τi : K ↪→ C satisfy τi(α) = αi. As α1, α2 are
real, we have that τ1, τ2 are real embeddings. Moreover α3, α4 are
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non-real but complex conjugates, so τ3, τ4 are a single pair of complex
embeddings. In particular, the signature of K is (2, 1).

6. Conjugates

Definition. Let α ∈ Q. The conjugates of α are the roots of its
minimal polynomial µQ,α (i.e. the minimal polynomial of α over Q) in
C.

By Theorem 57, the conjugates of α are σi(α) where the σi are the
embeddings of Q(α).

Theorem 64. Let K be a number field of degree n. Let σ1, . . . , σn be the
embeddings K ↪→ C. Let α ∈ K. Then the characteristic polynomial
χα has the form

(9) χα(X) =
n∏
i=1

(X − σi(α)).

Moreover,

TraceK/Q(α) =
n∑
i=1

σi(α), NormK/Q(α) =
n∏
i=1

σi(α)

Proof. By the Primitive Element Theorem we know that K = Q(β)
for some β ∈ K. In this case we know that χβ = µQ,β by Lemma 38.
Now by Theorem 57 the roots of µQ,β are σ1(β), . . . , σn(β) (and these
are distinct by the separability Lemma). Hence

χβ(X) = µQ,β(X) =
n∏
i=1

(X − σi(β)).

By definition, χβ(X) is the characteristic polynomial of mβ. Let Mβ be
the matrix for mβ with respect to the basis 1, . . . , βn−1. As the roots
of the characteristic polynomial (i.e. the eigenvalues) are distinct, Mβ

is diagonalizable. Thus there is a n× n invertible matrix T so that

T−1MβT = D, D = diag(σ1(β), . . . , σn(β))

Here the notation means that D is the diagonal matrix with σi(β) down
the diagonal.

Now α ∈ K so we can write α = c0+c1β+ · · ·+cn−1βn−1. It follows
that

Mα = c0In + c1Mβ + · · ·+ cn−1M
n−1
β .

Observe that Dj = (T−1MβT )j = T−1M j
βT . Thus

T−1MαT = c0In + c1D + · · ·+ cn−1D
n−1.

This is diagonal matrix with the i-th diagonal entry being

c0+c1σi(β)+c2σi(β)2+· · ·+cn−1σi(β)n−1 = σi(c0+c1β+· · ·+cn−1βn−1) = σi(α).

Thus χα, which is the characteristic polynomial of Mα is
∏

(X−σi(α)).
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Finally we want to compute TraceK/Q(α) and NormK/Q(α). These
are defined respectively as the trace and determinant of mα, or equiv-
alently the trace and determinant of any matrix for mα. We found
above the matrix Mα is diagonalizable with σi(α) down the diagonal.
This proves the formulae for the trace and norm. �

Example 65. Let K = Q( 3
√

2). Let’s compute the trace and norm of
α = 1 + 3

√
2. One way of doing this is writing down a matrix for mα.

But we can also do this using the embeddings. We know that K has
three embeddings that satisfy

σ1(
3
√

2) =
3
√

2, σ2(
3
√

2) = ζ
3
√

2, σ3(
3
√

2) = ζ2
3
√

2,

where ζ = exp(2πi/3). Then

TraceK/Q(α) = σ1(α) + σ2(α) + σ3(α)

= (1 +
3
√

2) + (1 + ζ
3
√

2) + (1 + ζ2
3
√

2)

= 3

since 1 + ζ + ζ2 = 0. Moreover, the norm is

NormK/Q(α) = (1 +
3
√

2)(1 + ζ
3
√

2)(1 + ζ2
3
√

2).

After expanding the brackets and simplifying we find that NormK/Q(α) =
3.

Example 66. Let K = Q(
√
d) where as usual d 6= 0, 1 is squarefree.

Let α = a + b
√
d where a, b ∈ Q. We know the two embeddings of K

satisfy

σ1(α) = a+ b
√
d, σ2(α) = a− b

√
d;

These are the conjugates of α. So the characteristic polynomial of α is

χα(X) = (X − (a+ b
√
d))(X − (a− b

√
d)) = X2 − 2aX + (a2 − b2d)

which clearly belongs to Q[X]. If b = 0 then α = a ∈ Q and χα(X) =
X2− 2aX + a2 = (X − a)2 is the square of the minimal polynomial. If
b 6= 0 then α /∈ Q and so χα is equal to the minimal polynomial.

7. Discriminants

Let K be a number field of degree n and let ω1, . . . , ωn be elements
of K. We let σ1, . . . , σn : K ↪→ C be the embeddings of K into C.
Consider the matrix

(10)

∣∣∣∣∣∣∣∣
σ1(ω1) σ2(ω1) · · · σn(ω1)
σ1(ω2) σ2(ω2) · · · σn(ω2)

...
...

...
σ1(ωn) σ2(ωn) · · · σn(ωn)

∣∣∣∣∣∣∣∣ .
Which we denote by the short-hand (σj(ωi)). We let D(ω1, . . . , ωn) be
the determinant of this matrix, and we call this the determinant of
ω1, . . . , ωn. Note that the order of σ1, . . . , σn is not uniquely determined
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by K. If we permute the embeddings then we simply permute the
columns of the matrix and so change D(ω1, . . . , ωn) by multiplying by
±1 depending on the sign of the permutation. So it is perhaps better
to square D. We let

∆(ω1, . . . , ωn) = D(ω1, . . . , ωn)2

and we call this the discriminant of {ω1, . . . , ωn}. We shall normally
consider only discriminants of bases. The discriminant measures the
‘size’ of a basis is in a precise sense that we will see eventually.

Example 67. Let d be a squarefree integer. Then 1,
√
d is a basis for

Q(
√
d). Then

D(1,
√
d) =

∣∣∣∣ 1 1√
d −

√
d

∣∣∣∣ = −2
√
d,

and so

∆(1,
√
d) = 4d.

If instead we take the basis 1, (1 +
√
d)/2 then

D
(

1, (1 +
√
d)/2

)
=

∣∣∣∣ 1 1
1+
√
d

2
1−
√
d

2

∣∣∣∣ = −
√
d,

and so

∆
(

1, (1 +
√
d)/2

)
= d.

Example 68. Let d be cubefree and K = Q( 3
√
d). The minimal poly-

nomial of θ = 3
√
d is X3 − d which has roots θ, ζθ and ζ2θ where

ζ = exp(2πi/3). Thus the embeddings of σi : K ↪→ C satisfy

σ1(θ) = θ, σ2(θ) = ζθ, σ3(θ) = ζ2θ.

It follows that the determinant of 1, θ, θ2 is

D(1, θ, θ2) =

∣∣∣∣∣∣
σ1(1) σ2(1) σ3(1)
σ1(θ) σ2(θ) σ3(θ)
σ1(θ

2) σ2(θ
2) σ3(θ

2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 1 1
θ ζθ ζ2θ
θ2 ζ2θ2 ζθ2

∣∣∣∣∣∣
= θ · θ2 ·

∣∣∣∣∣∣
1 1 1
1 ζ ζ2

1 ζ2 ζ

∣∣∣∣∣∣
= 3d · (ζ2 − ζ) = −3

√
−3 · d

where we have used ζ = (−1 +
√
−3)/2, ζ2 = (−1−

√
−3)/2. Thus

∆(1,
3
√
d,

3
√
d
2
) = −27d2.
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Exercise 69. For the brave only. We’ll see easier ways of doing
this calculation. Let p be an odd prime and ζ = exp(2πi/3). Let
K = Q(ζ) and recall that [K : Q] = p− 1. Compute ∆(1, ζ, . . . , ζp−2).

8. The Discriminant and Traces

Theorem 70. Let K be a number field of degree n and let ω1, . . . , ωn ∈
K. Then

∆(ω1, . . . , ωn) = Det(TraceK/Q(ωi · ωj)).
In particular, ∆(ω1, . . . , ωn) ∈ Q.

Proof. Write T for the n×n matrix with (i, j)-th entry σj(ωi). Then
D(ω1, . . . , ωn) = Det(T ) and so

∆(ω1, . . . , ωn) = Det(T )2 = Det(T · T t)
where T t = (σi(ωj)) is the transpose of T . Then (i, j)-th entry of T ·T t
is

n∑
k=1

σk(ωi)σk(ωj) =
n∑
k=1

σk(ωi · ωj) = TraceK/Q(ωi · ωj)

as required. Here we have used Theorem 64.
For the last part recall that TraceK/Q maps elements of K to Q. �

Example 71. Part I. In Example 68 we computed ∆(1, 3
√
d, 3
√
d
2
)

directly from the definition. We can now do this again, and more
easily, using Theorem 70. You’ll find

∆(1,
3
√
d,

3
√
d
2
) =

∣∣∣∣∣∣
3 0 0
0 0 3d
0 3d 0

∣∣∣∣∣∣ = −27d.

Part II. Let f = X3 +X2 − 2X + 8.

(i) Show that f is irreducible over Q.
(ii) Let θ be a root of f and K = Q(θ). Compute the discriminant

∆(1, θ, θ2).

Answer:
(i). Suppose f is reducible in Q[X]. As f ∈ Z[X] is monic we know
by Gauss’ Lemma, f = GH where G, H ∈ Z[X] are monic of degree
< deg(f) = 3. So one of the two factors must have degree one. Thus
without loss of generality G = X − α with α ∈ Z. Clearly α | 8. Thus
α must be one of ±1, ±2, ±4, ±8. We check these and find that none
are roots. Thus f is irreducible.

(ii). We need to compute

(11) ∆(1, θ, θ2) =

∣∣∣∣∣∣
Trace(1) Trace(θ) Trace(θ2)
Trace(θ) Trace(θ2) Trace(θ3)
Trace(θ2) Trace(θ3) Trace(θ4).

∣∣∣∣∣∣
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We know Trace(1) = 3 and from the minimal polynomial for f for θ
(which is the same as the characteristic polynomial in this case)

Trace(θ) = −1.

Note that

θ3 = −θ2 + 2θ − 8, θ4 = −θ3 + 2θ2 − 8θ.

As the traces are additive, we know how to compute Trace(θ3) and
Trace(θ4) as soon as we’ve worked out Trace(θ2).

It’s most straightforward to write down the matrix Mθ for mθ with
respect to the basis 1, θ, θ2. This is

Mθ =

0 0 −8
1 0 2
0 1 −1

 .

Thus

Mθ2 = M2
θ =

0 −8 −8
0 2 −10
1 −1 3

 .

Thus Trace(θ2) = Trace(Mθ2) = 5. Hence

Trace(θ3) = −5− 2− 24 = −31, Trace(θ4) = 31 + 10 + 8 = 49.

Substituting into (11) we get

∆(1, θ, θ3) = −2012 = 22 × 503.

Exercise 72. Suppose f = X3 + bX + c ∈ Q[X] is irreducible and let
θ be a root. Let K = Q(θ). Show that

∆(1, θ, θ2) = −4b3 − 27c2.

9. Discriminants and Bases

Lemma 73. If ω1, . . . , ωn are Q-linearly dependent then

D(ω1, . . . , ωn) = ∆(ω1, . . . , ωn) = 0.

Proof. Suppose a1ω1 + · · ·+ anωn = 0 where ai ∈ Q are not all 0. As
the σj are Q-linear, we have

0 = σj(a1ω1 + · · ·+ anωn) = a1σj(ω1) + · · ·+ anσj(ωn).

If v1, . . . ,vn are the rows of (10) then a1v1 + · · · + anvn = 0. As the
rows are linearly dependent the determinant is 0. �

In fact the converse if true, and so ω1, . . . , ωn is a basis for K/Q if
and only if ∆(ω1, . . . , ωn) 6= 0. We prove this shortly.
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Lemma 74. Let ci,j ∈ Q and let

βi =
n∑
j=1

ci,jωj.

Then

D(β1, . . . , βn) = det(ci,j)D(ω1, . . . , ωn),

and

∆(β1, . . . , βn) = det(ci,j)
2 ·∆(ω1, . . . , ωn).

Proof. Recall that the embeddings σk are Q-linear maps. Thus

σk(βi) =
n∑
j=1

ci,jσk(ωj).

Hence the matrix (σk(βi)) is obtained by multiplying the matrix (σk(ωj))
by the matrix (ci,j). The lemma follows by taking determinants. �

Theorem 75. Let K is a number field of degree n. Then

(i) Write K = Q(α). The discriminant of the basis 1, α, . . . , αn−1

is given by

∆(1, α, . . . , αn−1) =
∏

1≤i<j≤n

(αi − αj)2.

where α1, . . . , αn are the conjugates of α.
(ii) Let β1, . . . , βn ∈ K. Then β1, . . . , βn is a Q-basis if and only

if ∆(β1, . . . , βn) 6= 0.

Proof. Recall that the conjugates of α are given by σj(α) = αj. These
are distinct as they are the roots of the minimal polynomial of α. Now
σj(α

i) = αij and so

D(1, α, . . . , αn−1) =

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
α1 α2 · · · αn

...
...

...

αn−11 αn−12

... αn−1n

∣∣∣∣∣∣∣∣∣ .
This is a Vandermonde determinant and we know that

D(1, α, . . . , αn−1) =
∏

1≤i<j≤n

(αi − αj).

Squaring gives (i). Observe as the αi are distinct (by the Separability
Theorem), we have ∆(1, α, . . . , αn−1) 6= 0.

Now let β1, . . . , βn ∈ K. If β1, . . . , βn is not a basis then the dis-
criminant is zero by Lemma 73. Suppose β1, . . . , βn is a basis. By the
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Primitive Element Theorem we can write K = Q(α) for some α ∈ K.
As 1, . . . , αn−1 is also a basis (for K/Q) there are ci,j such that

βi =
n∑
j=1

ci,jα
j−1,

where det(ci,j) 6= 0. By Lemma 74 we have

∆(β1, . . . , βn) = Det(ci,j)
2 ·∆(1, . . . , αn−1).

Part (ii) follows from (i). �

Exercise 76. Let’s do Exercise 69 but somewhat more easily. For
this you need to revise Example 43. Recall that p is an odd prime and
ζ = exp(2πi/p). The conjugates of ζ are

ζ1 = ζ, ζ2 = ζ2, ζ3 = ζ3, . . . , ζp−1 = ζp−1.

(i) Show that

∆(1, ζ, . . . , ζp−2) =
∏

1≤i<j≤p−1

(ζi − ζj)2 = (−1)(p−1)/2 ·
∏

1≤i,j≤p−1,
i 6=j

(ζi − ζj).

(ii) Recall that the ζi all share the same minimal polynomial

Φ(X) = Xp−1 +Xp−2 + · · ·+ 1 =

p−1∏
i=1

(X − ζi).

With the help of the product rule show that

Φ′(ζi) =
∏

1≤j≤p−1,
j 6=i

(ζi − ζj).

and thus∏
i 6=j

(ζi − ζj) =

p−1∏
i=1

Φ′(ζi) = NormK/Q(Φ′(ζ))

(iii) By differentiating the identity

(X − 1)Φ(X) = Xp − 1

show that Φ′(ζ) = pζp−1/(ζ − 1).
(iv) Deduce that

∆(1, ζ, . . . , ζp−2) = (−1)(p−1)/2pp−2.





CHAPTER 4

Algebraic Integers

1. Definitions

Recall that Q is the set of algebraic numbers. We call α ∈ Q an
algebraic integer if is the root of a monic polynomial f ∈ Z[X]. We
write O for the set of algebraic integers.

If you’re doing Commutative Algebra you’ll recognize O as the in-
tegral closure of Z inside Q.

Example 77. i is a root of the polynomial X2 + 1 which is in Z[X] so
i is an algebraic integer. A more subtle example is (1 +

√
5)/2 which

is known as the golden ratio. This does not at first look integral, but
it has minimal polynomial X2 −X − 1 ∈ Z[X] and so is an algebraic
integer.

What about 1/
√

2? This has minimal polynomial X2−1/2 /∈ Z[X].
However the definition does not immediately allow us to conclude
that 1/

√
2 is not an algebraic number, because we need to show that

f(1/
√

2) 6= 0 for all monic f ∈ Z[X].

To answer the question in the above example we need some Algebra
II revision.

Lemma 78 (Gauss’ Lemma). Let f ∈ Z[X] be a monic polynomial. Let
g, h ∈ Q[X] satisfy f = gh. Then there is a non-zero rational number
λ such that G = λg and H = λ−1h are monic polynomials belonging to
Z[X] and f = GH.

Proof. Write f = gh where h ∈ Q[X]. There are non-zero rationals
λ, ε such that G = λg ∈ Z[X], H = εh ∈ Z[X]. Then (λε)f = GH ∈
Z[X]. Comparing the leading coefficients we see that λε = n ∈ Z. By
changing the sign of λ we may suppose n ≥ 1. Choose λ, ε so that n
is as small as possible. We claim that n = 1. Suppose otherwise and
let p | n be a prime. Now reduce the relation

nf(X) = G(X)H(X)

modulo p letting G ∈ Fp[X], H ∈ Fp[X] be the polynomials we obtain
from reducing the coefficients of G, H modulo p. As f(X) ∈ Z[X] and
p | n we have

G(X) ·H(X) = 0.

But Fp[X] is an integral domain, so without loss of generality G(X) =
0. Hence p divides all the coefficients ofG(X). In otherwords (λ/p)g(X) ∈

33
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Z[X]. This contradicts the minimality of n = λε, proving our claim
that n = 1. The theorem now follows as ε = n/λ = λ−1. �

A consequence of the above is the following theorem which we also
call Gauss’ Lemma.

Theorem 79 (Gauss’ Lemma). Let α be an algebraic number. Then
α is an algebraic integer if and only if µQ,α ∈ Z[X].

Proof. The “if” part follows from the definition of algebraic integer.
Let’s prove the “only if” part. Suppose α is a root of a monic polyno-
mial f ∈ Z[X]. Now µQ,α | f in Q[X]. By Gauss’s lemma there is a
non-zero rational λ such that λ · µQ,α is monic and has coefficients in
Z. But µQ,α is already monic. Hence λ = 1 completing the proof. �

Example 80. We can now answer the question of whether 1/
√

2 is an
algebraic integer. This has minimal polynomial X2 − 1/2 /∈ Z[X] so
1/
√

2 is an algebraic number but not an algebraic integer.

Corollary 81. α is an algebraic integer if and only if all its conju-
gates are algebraic integers.

Proof. By definition, conjugates share the same minimal polynomial.
�

Corollary 82. Let K be a number field and let α ∈ K. Then α is
an algebraic integer if and only if one of the following is true

(i) α is a root of a monic polynomial f ∈ Z[X];
(ii) µQ,α ∈ Z[X];

(iii) the characterisitc polynomial of α belongs to Z[X].

Proof. (i) is the definition of algebraic integer. We know already that
(i), (ii) are equivalent. Note that (iii) implies (i) since the characteristic
polynomial is monic and α is a root of it. Moreover (ii) implies (iii) as
the characteristic polynomial is a power of the minimal polynomial. �

Definition. If K is a number field the we write

OK = K ∩ O.

We call OK the ring of integers of K. Of course calling it that does
not automatically make it into a ring; we still need to prove that it is
a ring.

Theorem 83. OQ = Z.

It is for this reason that we call Z the set of rational integers.

Proof. If α ∈ Q then the minimal polynomial of α is X − α. This
belongs to Z[X] if and only if α ∈ Z. Thus Q∩O = Z as required. �
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We immediately see that Z ⊆ OK for any number field K.

It is natural to ask if every algebraic number is the ratio of two
algebraic integers. In fact, more is true. Every algebraic number α can
be write as β/m where β is an algebraic integer and m is a rational
integer.

Proposition 84. Let K be a number field and let α ∈ K. Then there
is a rational integer m ≥ 1 such that mα ∈ OK.

Proof. Let

µα(X) = c0 + c1X + · · ·+ cn−1X
n−1 +Xn ∈ Q[X].

Let m be the least common multiple of the denominators of the ci.
Note that

mnµα(X/m) = mnc0 +mn−1c1 + · · ·+mcn−1X
n−1 +Xn

is both monic and coefficients in Z. Moreover, β = mα is a root of
this. Thus β ∈ O. But also β ∈ K as m, α ∈ K so β ∈ OK . �

2. Ring of Integers

We will prove in this section that O and OK are rings. To make sure
you understand this section start out by doing the following exercise.

Exercise 85. Consider the ring R = Z[1/2] = {f(1/2) : f ∈ Z[X]}.
This is an additive abelian group (by just forgetting the multiplicative
structure of R and concentrating on the additive structure). Show that
R is not finitely generated as an additive abelian group. You might
find the fundamental theorem of abelian groups helpful.

Lemma 86. Let f , g ∈ Z[X] and suppose that g is monic. Then there
are unique q, r such that

(12) f = qg + r, q, r ∈ Z[X], deg(r) < deg(g).

Proof. You might be thinking “Of course I know this! It’s Euclid!”.
However Euclid gives you q, r ∈ Q[X]. The claim here is that the
unique q, r that Euclid gives you actually belong to Z[X] provided f ,
g ∈ Z[X] and g is monic.

Fix monic g ∈ Z[X]. We prove the existence of q, r ∈ Z[X] satisfy-
ing (12) by induction on the degree of f . If deg(f) < deg(g) then q = 0
and r = f so the claim is true. Now write deg(g) = n and suppose
deg(f) ≥ deg(g) so we can write deg(f) = n + m where m ≥ 0. Then
f and g start with (recall g is monic)

f = an+mX
n+m + · · · , g = Xn + · · · ,

where all the coefficients are in Z. Let f1 = f − an+mX
m · g. Then

f1 ∈ Z[X] and deg(f1) < deg(f). By the inductive hypothesis

f1 = q1g + r1, q1, r1 ∈ Z[X], deg(r1) < deg(g).
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Let q = q1 + an+mX
m and r = r1. Then q, r ∈ Z[X] and satisfy

(12). �

Lemma 87. Let α be an algebraic integer of degree d. Then for all j ≥ 0
the power αj can be written as Z-linear combination of 1, α, . . . , αd−1.

Proof. Let f = Xj and let g = µQ,α(X). These belong to Z[X] and
g is monic. Thus

Xj = q · µQ,α + r, q, r ∈ Z[X], deg(r) < d

Thus r = a0 + a1X + · · ·+ ad−1X
d−1 with ai ∈ Z. Hence

αj = q(α) · µ(α) + r(α) = a0 + a1α + · · ·+ ad−1α
d−1.

�

If α is an algebraic number, we write

Z[α] = {f(α) : f ∈ Z[X]}.
If α1, . . . , αn are algebraic numbers, we write

Z[α1, . . . , αn] = f(α1, . . . , αn) : f ∈ Z[X1, . . . , Xn]}.
It is easy to see that this is a subring of C.

Lemma 88. If α1, . . . , αn are algebraic integers then Z[α1, . . . , αn] is
finitely generated as an additive abelian group.

Proof. Every element of Z[α1, . . . , αn] can be written as an Z-linear
combination of expressions of the form αj11 · · ·αjnn . Let di be the degree
of αi. By Lemma 87 we know that αjii can be written as a Z-linear
combination of 1, αi, . . . , α

di−1
i . Thus every element of Z[α1, . . . , αn] can

be written as a Z-linear combination of αj11 · · ·αjnn with ji ≤ di−1. This
shows that Z[α1, . . . , αn] is finitely generated as an additive abelian
group. �

Lemma 89 (Integral Stability Lemma). Let H be a non-trivial finitely
generated additive subgroup of C. Let θ ∈ C and suppose that θH ⊆ H.
Then θ is an algebraic integer.

Proof. As H is finitely generated as an abelian group, there are
ω1, . . . , ωn ∈ H that span H; i.e.

H = Zω1 + Zω2 + · · ·+ Zωn.
Now θωi ∈ θH ⊆ H. Thus we may write

θωi =
n∑
j=1

ai,jωj

where ai,j ∈ Z. Let A be the matrix (ai,j). Let w be the column
vector with entries ω1, . . . , ωn. Then Aw = θw. In otherwords θ is an
eigenvalue of A and hence a root of χA(X) = det(XI − A). However,
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χA(X) is a monic polynomial with integer coefficients, and thus θ is an
algebraic integer. �

Theorem 90. O is a ring.

Proof. We want to show that O is a subring of C (or a subring of
Q). We know 0, 1 ∈ O. Thus it is enough to show that O is closed
under addition, negation and multiplication. Let α, β ∈ O; i.e. α and
β are algebraic integers. By Lemma 88 we know that the ring Z[α, β]
is finitely generated as an additive abelian group. Let γ be any of
α + β, −α and α− β. As Z[α, β] is a ring we have γZ[α, β] ⊆ Z[α, β].
Applying the Integral Stability Lemma shows that γ ∈ O. �

We can now justify calling OK the ring of integers of K.

Corollary 91. Let K be a number field. Then OK is a ring.

Proof. By definition OK = O ∩K so as the intersection of two sub-
rings of C it is a subring. �

Exercise 92. Let K be a number field and α ∈ K.

(i) Show that if α ∈ OK then TraceK/Q(α) and NormK/Q(α) are
in Z.

(ii) If K is quadratic prove the converse of (i).
(iii) Give a counterexample to show that (i) does not hold for cubic

polynomials.

Example 93. Let’s work out OK for K = Q(i). Let α ∈ OK . Then
α = a+ bi where a, b ∈ Q. Let u, v ∈ Z be the integer parts of a, b so
that

a = u+ ε, b = v + η, 0 ≤ ε < 1, 0 ≤ η < 1.

Then α = (u + vi) + (ε + ηi). But as OK is a ring containing Z and i
we have u+ vi ∈ OK . Hence ε+ ηi ∈ OK . Now TraceK/Q(ε+ ηi) = 2ε.
Thus 2ε ∈ Z. Hence ε = 0 or 1/2. Also as i ∈ OK we have i(ε+ ηi) =
−η + iε ∈ OK , so by taking traces we have 2η ∈ Z and so η = 0 or
1/2. Now we write down the characteristic polynomials for the four
possibilities

ε+ ηi = 0, 1/2, i/2, (1 + i)/2.

We find that only 0 is an algebraic integer. Thus α = u + vi with u,
v ∈ Z. Hence

Z[i] = {a+ bi : a, b,∈ Z}.

Exercise 94. Use the strategy of the above example to compute OK
for

(i) K = Q(
√

5).
(ii) K = Q( 3

√
10).
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(i) should be easy, but the answer might surprise you. (ii) is quite hard
so don’t waste too much time on it. It will be easier once we know
more about rings of integers and their integral bases.

3. Integral Basis

We saw that if K is a number field then OK is a ring. If we forget
about the multiplicative structure of OK and simply look at the addi-
tive structure then we will see that OK is an additive abelian group.
Let’s write O+

K for OK viewed purely as an additive abelian group.

Example 95. From Example 93 we see that every element of Z[i]+

can be written uniquely as a · 1 + b · i. Thus

Z[i]+ = Z · 1⊕ Z · i ∼= Z2.

Note that the isomorphism Z[i]+ ∼= Z2 is an isomorphism of abelian
groups and not of rings. We call 1, i an integral basis for Z[i]; that is
a basis for O+

K as an abelian group.

Definition. An integral basis for a number field K is a set of el-
ements ξ1, . . . , ξn ∈ OK which are a Z-basis for OK ; that is every
element of OK can be written uniquely in the form m1ξ1 + · · ·+mnξn
with mi ∈ Z. In other words,

O+
K = Z · ξ1 ⊕ Z · ξ2 ⊕ · · · ⊕ Z · ξn.

Just because we defined what an integral basis is, doesn’t mean
that it necessarily exists. We still have to do that. But for quadratic
fields that isn’t hard. We can even compute an integral basis which we
do in the next section.

We need to do some Algebra I revision.

Theorem 96 (The Fundamental Theorem of Finitely Generated Abelian
Groups). Let G be a finitely generated additive abelian group. Then
there is an integer r ≥ 0 (called the rank) and positive integers d1 |
d2 | d3 · · · | dk such that

G ∼= Zr ⊕ Z/d1Z⊕ Z/d2Z⊕ · · ·Z/dkZ.

For now we will be interested only in torsion-free abelian group.
An element a ∈ G is torsion if it has finite order. We say G is torsion-
free if the only element of finite order is 0.

Example 97. C is an additive abelian group if we forget about the
multiplicative structure. Let G be a subgroup of C. If a ∈ G has finite
order, then na = 0 for some n ≥ 1, and so a = 0 (as we are inside C).
Thus G is torsion-free.

Note that torsion-free means that G does not have any Z/dZ inside
it. As a corollary to the fundamental theorem we have.
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Corollary 98. Let G be a finitely generated torsion-free additive
abelian group. Then there is an integer r called the rank such that
G ∼= Zr.

Lemma 99. Let K be a number field. If O+
K is finitely generated then

it has an integral basis.

Proof. We know that O+
K is torion-free (as it is a subgroup of C).

Suppose that it is finitely generated. Then O+
K
∼= Zn for some n.

Let φ : O+
K → Zn be an isomorphism, and let φ−1(ei) = ωi where

e1, . . . , en are the standard basis vectors. Then

O+
K = Z · ω1 ⊕ · · · ⊕ Z · ωn.

�

Lemma 100. Let K be a number field of degree n. Let H be a finitely
generated subgroup of O+

K of rank m. Then m ≤ n.

Proof. Let ω1, . . . , ωm be a Z-basis for H and suppose m > n. Now
K has dimension n as a Q-vector space so ω1, . . . , ωm are linearly de-
pendent over Q. So there are ai ∈ Q, not all zero, such that

a1ω1 + · · ·+ anωn = 0.

Multiplying by the lcm of the denominators of the ai we may suppose
ai ∈ Z and not all 0. This contradicts the assumption that ω1, . . . , ωm
is a Z-basis for H. �

Example 101. Let K = Q(i). Then O+
K has rank 2. It has many

subgroups of rank 1; for example Z or Z · i or Z · (1 + i). It also
has many subgroups that are of rank 2 but are smaller than O+

K ; for
example

Z · 2⊕ Z · i = {2a+ bi : a, b ∈ Z}.
Note that this subgroup has rank 2 and has index 2 in O+

K .

4. Integers of Quadratic Fields

Lemma 102. Let d be a squarefree integer. Let µ a non-zero rational
number such that µ2d ∈ Z. Then µ ∈ Z.

Proof. Write µ = a/b where a, b are coprime integers and b ≥ 1.
Then a2d/b2 ∈ Z. As a, b are coprime, b2 | d and so b = 1 by the
squarefreeness of d. �

Lemma 103. Let d 6= 0, 1 be a squarefree integer. The (1 +
√
d)/2 is

an algebraic integer if and only if d ≡ 1 (mod 4).

Proof. The minimal polynomial for (1 +
√
d)/2 is

(X − 1/2)2 − d/4 = X2 −X +
1− d

4
.

This belongs to Z[X] if and only if d ≡ 1 (mod 4). �
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Lemma 104. Let d be squarefree, 6= 0, 1. Let K = Q(
√
d).

(i) If d 6≡ 1 (mod 4) then 1,
√
d is an integral basis for OK.

Therefore OK = Z[
√
d].

(ii) If d ≡ 1 (mod 4) then 1, (1 +
√
d)/2 is an integral basis for

OK. Therefore OK = Z[(1 +
√
d)/2].

Proof. Note that 1,
√
d ∈ OK . Thus u+ v

√
d ∈ OK for all u, v ∈ Z.

We need to discover if OK contains algebraic integers not of this form.
Suppose α ∈ OK . Then α ∈ K = Q(α) and so α = a + b

√
d

where a, b ∈ Q. The characteristic polynomial of α (which is a power
of the minimal polynomial) is X2 − 2aX + (a2 − bd2). Thus 2a ∈ Z
and a2 − bd2 ∈ Z. Moreover (2b)2d = (2a)2 − 4(a2 − bd2) ∈ Z. By
Lemma 102 we have 2b ∈ Z. Thus

α = (u+ v
√
d) + η

where u, v ∈ Z and η is one of 0, 1/2,
√
d/2, (1 +

√
d)/2. But clearly

u+v
√
d ∈ OK so η ∈ OK . Now 1/2 and

√
d/2 /∈ OK . If d 6≡ 1 (mod 4)

the (1 +
√
d)/2 /∈ OK and so η = 0, and so α = u+ v

√
d with u, v ∈ Z.

This gives (i).

Suppose d ≡ 1 (mod 4). Then (1+
√
d)/2 is an integer. Thus η = 0

or (1 +
√
d)/2. In the former case

α = u+ v
√
d = (u− v) + 2v

(1 +
√
d)

2

and in the latter case

α = u+ v
√
d+

(1 +
√
d)

2
= (u− v) + (2v + 1)

(1 +
√
d)

2
.

This completes the proof. �

Remark. If d 6≡ 1 (mod 4) then we know from the above that

OK = {a+ b
√
d : a, b ∈ Z}.

If d ≡ 1 (mod 4), then the following is a very useful way of writing the
integers:

OK = {a+ b
√
d : a, b ∈ Z} ∪

{r
2

+
s

2
·
√
d : r, s ∈ 2Z + 1

}
.

5. Bases and Discriminants

Lemma 105. Let K be a number field of degree n. Let H be a finitely
generated subgroup of O+

K of rank n. Suppose ω1, . . . , ωn and η1, . . . , ηn
are two bases for H. Then

∆(ω1, . . . , ωn) = ∆(η1, . . . , ηn).

Thanks to the lemma we may write without ambiguity ∆(H) =
∆(ω1, . . . , ωn) where ω1, . . . , ωn is any basis for H.



5. BASES AND DISCRIMINANTS 41

Proof. We know by Algebra I that

ωi =
n∑
j=1

ci,jηj

where ci,j ∈ Z and the n × n matrix (ci,j) is unimodular (meaning it
has determinant ±1). By Lemma 74 we have

∆(ω1, . . . , ωn) = Det((ci,j))
2 ·∆(η1, . . . , ηn)

proving the result. �

Lemma 106. Let K be a number field of degree n. Let H be a finitely
generated subgroup of O+

K of rank n. Then |∆(H)| is a positive integer
(and in particular it is non-zero).

Proof. Let ω1, . . . , ωn be a Z-basis for H. Recall that

∆(ω1, . . . , ωn) = Det(TraceK/Q(ωi · ωj)).

However H ⊂ OK so the entries of the determinant are in Z. It remains
to show that ∆(H) 6= 0. Suppose ∆(H) = 0. Then, by Theorem 75,
the elements ω1, . . . , ωn are not a Q-basis for K and so they are linearly
dependent over Q: say a1ω1 + · · · + anωn = 0 where ai ∈ Q and not
all zero. Multiplying by the lcm of the denominators of the ai, we can
suppose ai ∈ Z and not all 0. This contradicts the fact that ω1, . . . , ωn
is a Z-basis for H. �

Theorem 107. Let K be a number field of degree n. Let G, H be
finitely generated subgroups of O+

K of rank n and suppose H ⊆ G.
Then

∆(H) = [G : H]2 ·∆(G).

This is saying that the discriminant of a subgroup is bigger in ab-
solute value than the discriminant of the group.

Proof. We know by Algebra I that there is a Z-basis ω1, . . . , ωn for
G such that

η1 = d1ω1, η2 = d2ω2, . . . , ηn = dnωn

is a Z-basis for H, with d1, . . . , dn being positive integers. Now the
index [G : H] = d1 ·d2 · · · dn. The change of basis matrix for going from
ωi to the ηi is the diagonal matrix diag(d1, . . . , dn). By Lemma 74

∆(H) = ∆(η1, . . . , ηn)

= Det(diag(d1, . . . , dn))2 ·∆(ω1, . . . , ωn)

= (d1d2 · · · dn)2 ·∆(G)

= [G : H]2 ·∆(G).

�
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6. Existence of Integral Basis

Theorem 108. Let K be a number field of degree n. Then OK has
an integral basis of rank n. In other words there are algebraic integers
ω1, . . . , ωn such that

O+
K = Z · ω1 ⊕ Z · ωn ⊕ · · · ⊕ Z · ωn.

Proof. We need to show that O+
K is finitely generated of rank n. First

we show the existence of a subgroup of O+
K that is finitely generated

of rank n. This is easy. Start with any basis α1, . . . , αn for K/Q.
By Proposition 84 there are non-zero integers m1, . . . ,mn such that
βi = miαi are algebraic integers. Now just check that β1, . . . , βn is still
a basis for K/Q. Let H = Z ·β1⊕· · ·⊕Z ·βn. We know by Lemma 106
that |∆(H)| is a positive integer.

Now from among the finitely generated subgroups of rank n we
choose one, let’s call it H, such that |∆(H)| is as small as possible. We
will show that O+

K = H. Let α ∈ O+
K ; we want to show that α ∈ H.

Let G be the subgroup of O+
K generated by α and any basis for H. In

particular G is finitely generated and H is a subgroup of G. As H has
rank n, we see G must have rank ≥ n. But by Lemma 100, the group
G must have rank ≤ n. Thus G has rank n. By Theorem 107 we know
that

∆(H) = [G : H]2 ·∆(G).

By the minimality of |∆(H)| we have [G : H] = 1. Thus G = H and
so α ∈ H. Hence O+

K = H. The proof is complete as H is finitely
generated of rank n. �

Definition. We define the discriminant of K (also called the dis-
criminant of OK) to be the discriminant of any integral basis for OK .
It is denoted by ∆K .

7. Algorithm for Computing an Integral Basis

Lemma 109. Let K be a number field of degree n. Let ω1, . . . , ωn ∈ OK
be independent but not a Z-basis. Then there is a prime p such that
p2 | ∆(ω1, . . . , ωn) and rational integers 0 ≤ ui < p, not all zero, such
that

u1ω1 + · · ·+ unωn
p

∈ OK .

Moreover, if η1, . . . , ηn is a basis for the subgroup spanned by ω1, . . . , ωn
and (u1ω1 + · · ·+ unωn)/p then

∆(η1, . . . , ηn) =
1

p2
·∆(ω1, . . . , ωn).

Proof. Let H be the subgroup generated by the ωi. Suppose OK 6= H
and let m = [O+

K : H] > 1. Let p | m. We know ∆(H) = m2 ·∆(O+
K)

and so p2 | ∆(H). Now consider the quotient O+
K/H. This is an abelian
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group of order m. By the Fundamental Theorem of finitely generated
abelian groups you can show it has an element of order p (you can also
deduce this from Sylow’s Theorems if you know what these are). Thus
there is α ∈ OK such that p(α + H) = 0 but α + H 6= 0; i.e. pα ∈ H
but α /∈ H. As pα ∈ H we may write

pα = a1ω1 + · · ·+ anωn

with ai ∈ Z. Now let ai = ui+pbi with ui, bi ∈ Z and 0 ≤ ui < p. If all
the ui are zero then α = b1ω1 + · · ·+ bnωn ∈ H giving a contradiction.
Thus not all ui are zero. Let

β =
u1ω1 + · · ·+ unωn

p
.

Then
β = α− (b1ω1 + · · ·+ bnωn) ∈ OK

as required.
For the last step let G be the group generated by the ωi and β. It

is easy to show that H has index p in G so ∆(G) = ∆(H)/p2. �

Example 110. Let θ be a root of X3 +X+1. We compute an integral
basis for K = Q(θ). We start with 1, θ, θ2 which is a basis for K and
consists of elements of OK . By Exercise 72 this has discriminant

∆(1, θ, θ2) = −4− 27 = −31.

This is squarefree, so 1, θ, θ2 is an integral basis for OK .

Example 111. We continue Example 71. Recall that f = X3 +X2 −
2X + 8, that θ is a root of f and that K = Q(θ). We would like to
compute an integral basis and the discriminant of OK . We found that

∆(1, θ, θ3) = −2012 = 22 × 503.

If 1, θ, θ3 is not an integral basis, then the index of the subgroup gen-
erated by it in O+

K can only be 2. Moreover, in this case there are
integers 0 ≤ ui ≤ 1, not all zero, such that

β =
u0 + u1θ + u2θ

2

2
∈ OK .

This gives us seven possibilities to test. We can cut down the work a
little. For example, taking traces we find

3u0 − u1 + 5u2
2

∈ Z.

This rules out (u0, u1, u2) = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). So we’re
left with three possibilities:

(u0, u1, u2) = (1, 1, 0), (1, 0, 1), (0, 1, 1).

We can get a little further by trying norms. Note that

Mβ =
u0
2
· I3 +

u1
2
·Mθ +

u2
2
·Mθ2 .
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Thus

Norm((1 + θ)/2)) =

∣∣∣∣∣∣
1/2 0− 4
1/2 1/2 1
0 1/2 0

∣∣∣∣∣∣ = −5/4

thus (u0, u1, u2) 6= (1, 1, 0). Similarly

Norm((1 + θ2)/2) =

∣∣∣∣∣∣
1/2 −4 4
0 3/2 −5

1/2 −1/2 2

∣∣∣∣∣∣ = 29/4,

thus (u0, u1, u2) 6= (1, 0, 1). We’re finally left with β = (θ+ θ2)/2. This
has matrix

Mβ =

 0 −4 0
1/2 1 −4
1/2 0 1


and characteristic polynomial

χK,β(X) = X3 − 2X2 + 3X − 10 ∈ Z[X].

Thus β ∈ OK . Since θ2 = 2β − θ, the subgroup generated by 1, θ, θ2, β
has basis 1, θ, β. This has discriminant ∆(1, θ, β) = (1/4) ·∆(1, θ, θ2) =
−503 which is squarefree (in fact prime). Thus 1, θ, (θ + θ2)/2 is an
integral basis, the ∆K = −503.

Remark. We showed in the above example that OK 6= Z[θ]. It can in
fact be shown that OK 6= Z[α] for any α ∈ OK . We see that there is
no analogue of the Primitive Element Theorem for rings of integers.



CHAPTER 5

Factorisation and Ideals

1. Revision: Units, Irreducibles and Primes

Let R be an integral domain (commutative ring with a 1 and with-
out zero divisors). Recall that an element a ∈ R is a unit if there is
some b ∈ R such that ab = 1. The set of units form a multiplicative
group denoted by R∗.

Recall that an element a ∈ R is called irreducible if it is non-zero,
non-unit, and whenever we can write a = bc with b, c ∈ R then b is
a unit or c is a unit. An element a ∈ R is a prime if it is non-zero,
non-unit, and whenever a | bc with b, c ∈ R then a | b or a | c. We say
that a, b are associates if a = ub where u is a unit of R.

Exercise 112. Show that a prime is also an irreducible (you did this
in Algebra II, and it’s easy).

We say that R is unique factorisation domain (UFD) if every
non-zero non-unit a can be written as a product a = r1r2 · · · rn where
the ri are irreducibles and if moreover a = s1s2 · · · sm where the sj are
irreducibles then n = m, and after permuting, ri and si are associates.
In a UFD, every irreducible is a prime.

We say that R is a principal ideal domain (PID) if every ideal
of R is a principal ideal (i.e. generated by one element). In Algebra
II you showed that a PID is also a UFD. The converse is not true in
general, but we’ll see that the converse is true for R the ring of integers
of a number field.

Example 113. You know that Z (the ring of integers of Q) is a UFD.
If you did Introduction to Number Theory then you also know that
Z[i] (the ring of itnegers of Q(i)) is a UFD.

Here we consider Z[
√
−5] (the ring of integers of Q(

√
−5)). Note

that

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5).

We have here two factorisations of 6. We claim that both are fac-
torisations into irreducibles. Let’s check for example that 1 +

√
−5 is

irreducible. Suppose 1 +
√
−5 = (a+ b

√
−5)(c+ d

√
−5) where a, b, c,

d are integers. Taking norms we have

6 = (a2 + 5b2)(c2 + 5d2).

45
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Thus without loss of generality a2 + 5b2 = 1 and c2 + 5d2 = 6 or
a2 + 5b2 = 2 and c2 + 5d2 = 3. It is clear that the second case forces
b = 0 and a2 = 2 which is impossible. It follows from the first case that
(a, b) = (±1, 0) and so a+b

√
−5 = ±1 is a unit. Thus 1+

√
−5 is indeed

irreducible. You can check that 1−
√
−5, 2, 3 are also irreducible.

We show that 2, 1 +
√
−5 are not associates and 2, 1 −

√
−5 are

not associates. This is immediate because the ratios (1 +
√
−5)/2 and

(1 −
√
−5)/2 do not belong to Z[

√
−5] (and hence certainly are not

units in Z[
√
−5]). This shows that Z[

√
−5] is not a UFD. It follows

from this that Z[
√
−5] is not a PID.

2. Revision: Ideals

We saw that unique factorization can fail for rings of integers of
number fields. It turns out that we can recover unique factorization if
we look at ideals instead of elements. What this means is that we will
show that every ideal can be written as a product of powers of prime
ideals in a unique way.

We shall mostly use gothic letters for ideals a, b, etc. Let R be a
ring. Recall that an ideal a of R is a subset a ⊆ R satisfying

• a is an abelian group under addition;
• xa ⊆ a for x ∈ R.

If α ∈ R we define the principal ideal generated by α be

αR = {αr : r ∈ R} .
Another common notation for αR is 〈α〉. Of course 〈1〉 = R. When we
think of R as an ideal it is usual to write it as 〈1〉. The zero ideal is
just {0}; we usually write this as 〈0〉 or simply 0.

In more generality, if α1, α2, . . . , αn are non-zero elements R we
define the ideal generated by α1, . . . , αn to be

〈α1, . . . , αn〉 =

{
n∑
i=1

βiαi : β1, . . . , βn ∈ R

}
.

If a, b are ideals then so is

(a, b) = {α + β : α ∈ a, β ∈ b} .
We sometimes write a + b for (a, b). We say that a, b are coprime if
a + b = 〈1〉.

We define the ideal product ab to be the set of all finite sums∑r
i=1 αiβi with αi ∈ a and βi ∈ b. It is an easy exercise to show that

ab is again an ideal.

Exercise 114. Let a and b be ideals. Show that a + b, ab are ideals.

Lemma 115. Let K be a number field. Every ideal a of OK can be
written in the form a = 〈α1, . . . , αn〉 for some αi ∈ OK.
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Proof. Write a+ for a considered as an abelian group. This is a sub-
group of O+

K which is finitely generated. Thus there exists α1, . . . , αn
such that

a+ = Z · α1 ⊕ · · · ⊕ Z · αn.
Clearly

a = 〈α1, . . . , αn〉.
�

Lemma 115 tells us that every ideal is finitely generated. Rings
with such a property are called Noetherian.

Lemma 116. If a = 〈α1, . . . , αm〉 and b = 〈β1, . . . , βn〉 then

a + b = 〈α1, . . . , αm, β1, . . . , βn〉,
and

ab = 〈αi · βj : i = 1, . . . ,m, j = 1, . . . , n〉.

Proof. This is clear from the definition of ideal addition and multi-
plication. �

Example 117. Let K = Q(
√
−5). We know that OK = Z[

√
−5]. We

saw in Example 113 that this is not a PID. Let’s write down a non-
principal ideal of OK . Let a = 〈2, 1 +

√
−5〉. We want to show that it

is non-principal. Suppose it is, say

a = β · OK
for some β ∈ OK . Since β | 2 and β | (1 +

√
−5) we have Norm(β) | 4

and Norm(β) | 6 and so Norm(β) | 2. Write β = u + v
√
−5 where u,

v are integers. Thus u2 + 5v2 = ±1 or ±2. It follows that v = 0 and
u = ±1, so 1 = ±β ∈ a (and so a = OK). However, any element of a
has the form

2(a+ b
√
−5) + (c+ d

√
−5)(1 +

√
−5),

with a, b, c, d ∈ Z. If this equals 1 then

2a+ c− 5d = 1, 2b+ c+ d = 0.

But 2a+ c− 5d ≡ 2b+ c+ d (mod 2), and so 1 ≡ 0 (mod 2) giving a
contradiction! Therefore a is non-principal.

From the recipes in Lemma 116

a + a = a,

(which can be deduced from the definition of an ideal) and

a2 = 〈4, 2 + 2
√
−5,−4 + 2

√
−5〉 (as (1 +

√
−5)2 = −4 + 2

√
−5)

= 〈4, 2 + 2
√
−5, 2

√
−5〉 (adding first generator to the last)

= 〈4, 2, 2
√
−5〉 (subtracting third generator from second)

= 〈2〉 (since 4 and 2
√
−5 are multiples of 2).
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Thus a2 is a principal ideal, even though a is non-principal.
Now let

b = 〈3, 1 +
√
−5〉.

You can check that this ideal is non-principal. Note that a+b contains
both 2 and 3 so contains 3− 2 = 1. Thus a + b = OK (i.e. the ideals
a, b are coprime). Also

ab = 〈6, 2 + 2
√
−5, 3 + 3

√
−5,−4 + 2

√
−5〉

= 〈6, 1 +
√
−5,−4 + 2

√
−5〉

= 〈6, 1 +
√
−5〉 since −4 + 2

√
−5 = −6 + 4(1 +

√
−5)

= 〈1 +
√
−5〉 (since (1 +

√
−5)(1−

√
−5) = 6).

Thus again ab is principal even though both a and b are non-principal.

3. The Noetherian Property

Theorem 118. Let R be a ring (commutative with 1). Then the fol-
lowing are equivalent.

(i) Every ideal of R is finitely generated (an ideal is finitely
generated if it can be written as 〈α1, . . . , αn〉 for some α1, . . . , αn ∈
R).

(ii) R satisfies the ascending chain property for ideals: if a1 ⊆
a2 ⊆ a3 ⊆ · · · are ideals then there is some m such that am =
am+1 = am+2 = · · · .

(iii) Every non-empty set of ideals S contains a maximal element
(an element a ∈ S is maximal if a is not properly contained
in any b ∈ S).

A ring satisfying any (and hence all) of properties (i)–(iii) is called
Noetherian.

Proof. (i) implies (ii). Write

a =
∞⋃
n=1

an.

It is easy to see that a is an ideal. By (i) we have a = 〈α1, . . . , αn〉.
But each αi is contained in some ami

. Let m = max(mi). Then
α1, . . . , αm ∈ am. Hence a = am. It follows that am = am+1 = am+2 =
· · · .

(ii) implies (iii). Suppose there is no maximal element. Let a1 be
any element of S. As it isn’t maximal, there is some a2 in S which
properly cotains a1. Repeat the process, to obtain an ascending chain

a1 ( a2 ( a3 ( · · ·

which is not stationary. This contradicts (ii).
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(iii) implies (i). Let c be an ideal. We want to show that c is finitely
generated. Let S be the set of finitely generated ideals contained in c.
The set S is non-empty, since 〈γ〉 ∈ S for any γ ∈ c. By (iii), the set S
has a maximal element a. As a is finitely generated, a = 〈α1, . . . , αn〉.
We know a ⊆ c. We claim c = a which would complete the proof. Let
α ∈ c. Then

b = 〈α1 . . . , αn, α〉
is a finitely generated ideal contained in c which contains a. By the
maximality of a we have b = a. Thus α ∈ a. Hence c = a, and so is
finitely generated. �

Theorem 119. Rings of integers of number fields are Noetherian.

Proof. Any ideal of OK is finitely generated by Lemma 115. The
theorem follows from Theorem 118. �

4. Quotient Rings

Let a be an ideal of the ring OK . A coset of a is of the form

α + a = {α + α : α ∈ a}.
Recall that two cosets are equal α+ a = β+ a if and only if α−β = a.
We define the quotient

OK/a = {x+ a : x ∈ a}.
A priori OK/a is just the set of cosets of a, but we can make it into
a ring by defining addition and multiplication as follows:

(x+ a) + (y + a) = (x+ y) + a, (x+ a)(y + a) = xy + a.

It is an easy exercise to show that these operations are well-defined and
that they do give a ring structure on OK/a.

We would like to prove that if a is a non-zero ideal then OK/a is
finite. Before we can do this we need the following lemma.

Lemma 120. Let a be a non-zero ideal of OK. Let α be a non-zero el-
ement of a. Then NormK/Q(α) ∈ a. In particular a contains a positive
rational integer.

Proof. Let σ1, . . . , σn be the embeddings of K. Then Norm(α) =
α1α2 · · ·αn where αi = σi(α). Without loss of generality α1 = α.
Now the αi are algebraic integers (they share the same minimal poly-
nomial as α). Thus the product β = α2 · · ·αn ∈ O. Moreover,
β = Norm(α)/α. But Norm(α) ∈ Z ⊆ OK and α ∈ OK so β =
Norm(α)/α ∈ K. Hence β ∈ O ∩K = OK . It follows that Norm(α) =
αβ ∈ a. As α is non-zero, Norm(α) is a non-zero rational integer. So
either Norm(α) or −Norm(α) is a positive rational integer in a. �

Theorem 121. Let a be a non-zero ideal of OK. Then the quotient
ring OK/a is finite.



50 5. FACTORISATION AND IDEALS

Proof. By Lemma 120 there is some positive rational integer m ∈ a.
Thus OK ⊇ a ⊇ mOK . To show that the index [OK : a] is finite it
is enough to show that the index [OK : mOK ] is finite. But as an
abelain group OK ∼= Zn (where n = [K : Q]) and mOK ∼= mZn, so
OK/mOK ∼= (Z/mZ)n which is finite. �

5. Prime and Maximal Ideals

We need to revise some Algebra II.

Definition. Let R be a ring (commutative with 1). We call a proper
ideal p prime, if for all α, β ∈ R we have

αβ ∈ p =⇒ α ∈ p or β ∈ p.

We call a proper ideal m maximal if there isn’t any ideal a satisfying

m ( a ( R.

In words, a proper ideal is maximal if and only if it is not properly
contained in some other proper ideal.

Theorem 122. Every proper ideal of OK is contained in a maximal
ideal.

Proof. Let a be a proper ideal. Let S be the set of proper ideals
containing a. This is non-empty as a ∈ S. By the Noetherian property
of OK , the set S must contain a maximal element m. It is clear that
m is a maximal ideal. �

You will no doubt recall the following theorem from Algebra II and
have no trouble in reconstructing its proof. Here we do the proof a
little differently.

Lemma 123. Every finite integral domain is a field.

Proof. Let R be a finite integral domain and let a be a non-zero
element in R. We would like to show that a is invertible. The sequence
a, a2, a3, . . . must have repetition. Thus there are n < m such that
am = an. Thus an(am−n − 1) = 0. As a 6= 0 and R is an integral
domain, am−n = 1. But m − n ≥ 1, so a has an inverse in R, namely
am−n−1. �

We shall need the following theorem, again from Algebra II.

Theorem 124. Let R be ring (commutative with 1). An ideal p is
prime if and only if R/p is an integral domain. An ideal m is maximal
if and only if R/m is a field. Maximal ideals are prime.

Proof. The definition of primality for an ideal p can be reformulated
as follows:

(α + p)(β + p) = 0 =⇒ α + p = 0 or β + p = 0.

This is the same as saying that OK/p is an integral domain.
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Suppose m is maximal. Let a+ m 6= 0 (i.e. a /∈ m). Then the ideal
aOK +m strictly contains m and so by definition of maximality equals
OK . In particular 1 ∈ aOK + m and so 1 = ab+m where b ∈ OK and
m ∈ m. But then (a+ m)(b+ m) = 1−m+ m = 1 + m. Thus O/m is
a field. Conversely, suppose O/m is a field. Let a be a ideal properly
containing m. Thus there is some element a ∈ a with a /∈ m. Hence
a + m 6= 0 and is therefore invertible in the field OK/m. In particular
there is some b ∈ OK so that (a+m)(b+m) = 1+m. So 1−ab ∈ m ⊂ a.
But a ∈ a so 1 ∈ a so a = OK proving maximality of m.

For the last part if m is maximal, then OK/m is a field and so an
integral domain, therefore m is prime. �

Exercise 125. Here is a direct way of showing the maximal ideals
are prime. Suppose that m is maximal and suppose that αβ ∈ m but
α /∈ m. Let m′ = (α) + m. Show that m′ = (1). Deduce that β ∈ m.
Hence m is prime.

Theorem 126 (Non-zero prime ideals are maximal). Let K be a num-
ber field. An non-zero ideal of OK is maximal if and only if it is prime.

Proof. We know that maximal ideals are prime. If p is a non-zero
prime ideal, then OK/p is an integral domain, which is finite by The-
orem 121. Thus OK/p is a field by Lemma 123, so p is maximal. �

Exercise 127. The conclusion that a prime ideal is maximal is false
for more general rings. Convince yourself that the ideal X ·Q[X, Y ] in
the ring Q[X, Y ] is prime but not maximal.

6. Fractional Ideals

We aim to show that every non-zero ideals can be written as a
product of prime ideals, and that any such factorisation is unique up
to reordering. To achieve this we need to introduce the notion of a
fractional ideal, which is merely a technical convenience.

Definition. A fractional ideal of OK is a subset a ⊆ K satisfying
the following:

(i) a is an abelian group under addition;
(ii) xa ⊆ a for every x ∈ OK ;

(iii) there exists some non-zero y ∈ OK such that ya ⊆ OK .

Warning: A ideal of OK is a fractional ideal of OK , but a fractional
ideal of OK need not be an ideal of OK . Indeed it is a subset of K but
in general not of OK .

Exercise 128. Convince yourself that 1
2
Z is a fractional ideal of Z but

not an ideal of Z.

The following lemma is clear.
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Lemma 129. Any ideal of OK is also a fractional ideal. A fractional
ideal of OK is also an ideal of OK if and only if it is contained in OK.

Lemma 130. A subset a ⊆ K is a fractional ideal of OK if and only
if a = 1

β
· b where b is an ideal of OK and β is a non-zero element of

OK.

Proof. It is easy to see that if b is an ideal then 1
β
· b is a fractional

ideal. Conversely let a be a fractional ideal. By (iii) in the definition,
there is a non-zero β such that βa ⊆ OK . Let b = βa. Now it’s easy
to check from (i) and (ii) that b is an ideal. �

We extend our earlier notation for ideals generated by elements.
Given α1, . . . , αn ∈ K we write

〈α1, α2, . . . , αn〉 =

{
n∑
i=1

βiαi : β1, . . . , βn ∈ OK

}
.

We define multiplication for fractional ideals in the same way we
defined it for ideals: ab is the set of all finite sums

∑r
i=1 αiβi with

αi ∈ a and βi ∈ b.

Lemma 131. The product of two fractional ideals is a fractional ideal.

Proof. This follows from Lemma 130 as the product of two ideals is
an ideal. �

Lemma 132. Let a be a non-zero ideal of OK and define

a−1 = {β ∈ K : βa ⊆ OK}.
Then

(a) a−1 is a fractional ideal of OK;
(b) OK ⊆ a−1;
(c) a−1a is an ideal of OK.

It will turn out that a−1a = OK = 〈1〉 thus a−1 is the inverse of a
in the group of fractional ideals. This will take us a while to prove.

Proof. Let’s show that a−1 is a fractional ideal. Clearly 0 ∈ a−1. If
β1, β2 ∈ a−1 then

(β1 + β2)a ⊆ β1a + β2a ⊆ OK +OK = OK .
Thus β1 + β2 ∈ a−1. Similarly −β1 ∈ a−1. Thus a−1, considered
additively, is a subgroup of K. Moreover, if x ∈ OK and β ∈ a−1 then

(xβ)a = x(βa) ⊆ xOK ⊆ OK .
Hence xβ ∈ a−1 and so xa−1 ⊆ a−1. Thus a−1 satisfies conditions (i)
and (ii) in the definition of fractional ideal.

Finally let y be any non-zero element of a. Then βy ∈ OK for all
β ∈ a−1. Thus ya−1 ⊆ OK so we satisfy condition (iii). Thus a−1 is a
fractional ideal of OK . This proves (a).
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Part (b) is simply saying that βa ⊆ OK for all β ∈ OK . But as a
is an ideal of OK we have βa ⊆ a ⊆ OK , proving (b).

By definition of a−1, for any β ∈ a−1 we have β · a ⊆ OK . Thus

a−1a =
∑
β∈a−1

β · a ⊆ OK .

As the product of fractional ideals is a fractional ideal, we see that a−1a
is a fractional ideal contained in OK , and thus an ideal of OK . This
proves (c). �

Exercise 133. Check that 〈α〉−1 = 〈α−1〉 for non-zero α ∈ OK .

Exercise 134. Let a ⊆ b be non-zero ideals of OK . Check that
b−1 ⊆ a−1.

7. To Contain is to Divide

We would like to define what it means for one ideal to be a divisor
of another ideal. For principal ideals this perhaps clear; we want 〈α〉 to
divide 〈β〉 precisely when α divides β. The following exercise suggests
how we can generalize this notion from principal ideals to arbitrary
ideals.

Exercise 135. Let α, β be non-zero elements of OK . Show that α | β
is equivalent to 〈α〉 ⊇ 〈β〉.

Definition. Let a and b be non-zero ideals of OK . We say that a
divides b and we write a | b if a ⊇ b.

Before proceeding we need one more property of prime ideals.

Lemma 136. Suppose that a, b and p are non-zero ideals such that p
is prime and p | ab. Then either p | a or p | b.

Perhaps you would like to prove this for yourself before looking at
the proof.

Proof of Lemma 136. Proof suppose p | ab but p - a. This means
p ⊇ ab but p 6⊇ a. In particular, there is some a ∈ a such that a /∈ p.
Let b ∈ b. Then ab ∈ ab ⊆ p. As p is prime and a /∈ p we have b ∈ p.
Thus p ⊇ b, which means p | b. �

8. Unique Factorisation of Ideals

Lemma 137. Let a be a non-zero ideal of OK. Then there are prime
ideals p1, . . . , pr such that a | p1p2 · · · pr.

Proof. Note that a | p1p2 · · · pr means p1p2 · · · pr ⊆ a. Let S be the
set of ideals not containing any product of non-zero prime ideals. The
lemma is simply asserting that S is empty. We suppose S is non-empty.
As OK is Noetherian, S must have a maximal element a.
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Now a is not prime, otherwise we can take p1 = a. Thus there are
β, γ /∈ a such that βγ ∈ a. Let

b = a + 〈β〉, c = a + 〈γ〉.
Then a ( b, a ( c. By the maximality of a in S, the ideals b, c do not
belong to S. Thus there are prime ideals pi such that

p1 · · · pr ⊆ b, pr+1 · · · ps ⊆ c.

But then
p1 · · · ps ⊆ bc ⊆ a2 + βa + γa + 〈βγ〉 ⊆ a,

giving a contradiction. �

Lemma 138. Let p be a non-zero prime ideal of OK. Then p−1 properly
contains OK.

Proof. From the definition of p−1 we see that p−1 contains OK . We
will suppose p−1 = OK and obtain a contradiction. Let α be a non-zero
element of p. Thus 〈α〉 ⊆ p and so p | 〈α〉. By Lemma 137, there are
non-zero prime ideals p1, . . . , pr such that

〈α〉 | p1p2 · · · pr.
We may assume that r is minimal. Thus p | p1p2 · · · pr. By Lemma 136,
we have p | pi for some i. Without loss of generality p | p1, which
means p ⊇ p1. As prime ideals are maximal, we have p = p1. Since
〈α〉 | pp2 · · · pr we have

p · p2p3 · · · pr ⊆ α · OK .
Hence

α−1p2p3 · · · pr · p ⊆ OK .
It follows that

α−1p2p3 · · · pr ⊆ p−1 = OK .
Hence

p2p3 · · · pr ⊆ αOK = 〈α〉.
This contradicts the minimality of r. �

Lemma 139. Let a, p be non-zero ideals with p prime. Suppose a ⊆ p.
Then p−1a is an ideal of OK properly containing a.

Proof. Since 1 ∈ p−1 we see that p−1a contains a. Moreover, a ⊆ p
so p−1 ⊆ a−1. Hence p−1a ⊆ a−1a ⊆ OK . Thus p−1a is an ideal of OK
containing a.

Suppose p−1a = a. Thus for all θ ∈ p−1 we have θa ⊆ a. By the
Integral Stability Lemma (Lemma 89) we have θ ∈ OK for all θ ∈ p−1.
So p−1 = OK . This contradicts Lemma 138. Hence p−1a is an ideal of
OK properly containing a. �

Lemma 140. If p is a non-zero prime ideal of OK, then p−1p = OK.
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Proof. By Lemma 139, p−1p is an ideal of OK properly containing p.
But p is a maximal ideal. Thus p−1p = 〈1〉. �

Theorem 141 (Unique Factorization Theorem for Ideals). Let K be a
number field and OK be its ring of integers. Then every non-zero ideal
a can be written as a product of of finitely non-zero prime ideals

a =
n∏
i=1

pi.

Moreover this factorization is unique up to re-ordering.

We note an important convention, which is that the ideal OK = 〈1〉
is regarded as the product of zero many prime ideals.

Proof. Existence. Let S be the set of ideals that cannot be writ-
ten as products of non-zero prime ideals. We want to show that S is
empty. Suppose S 6= ∅. By the Noetherian property, S has a maximal
element a. Now a 6= 〈1〉 (since this is the product of the empty set of
prime ideals). Thus a is proper and so contained in a maximal ideal p.
Since a ⊆ p, Lemma 139 tells us that p−1a is an ideal of OK properly
containing a. As a is maximal in S, p−1a /∈ S. Thus it can be written
as a product of non-zero prime ideals

p−1a = p1p2 · · · pr.
Multiplying both sides by p (and using p−1p = 〈1〉 from Lemma 140)
we obtain a contradiction.

Uniqueness. Suppose that p1, . . . , pm and q1, . . . , qn are non-zero
prime ideals of OK satisfying

(13)
m∏
i=1

pi =
n∏
j=1

qj .

We want to show that n = m and that p1, . . . , pm and q1, . . . , qn are
the same up to re-ordering. We do this by induction on min(m,n).
Suppose first that min(m,n) = 0. Without loss of generality suppose
that m = 0. If n = 0 then there is nothing to prove. So suppose that
n > 0. Hence we have

〈1〉 = q1q2 . . . qn.

But q1q2 . . . qn ⊆ qi for i = 1, . . . , n, so qi = 〈1〉. As prime ideals are
proper by definition, we have a contradiction. Hence if min(m,n) = 0
then m = n = 0.

We now come to the inductive step. Suppose min(m,n) ≥ 1. Note
that

pm ⊇
m∏
i=1

pi =
n∏
j=1

qj.

In otherwords, pm divides
∏

qj. By Lemma 136 we see that pm | qj
for some j. After re-labeling we can suppose that pm | qn and so
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pm ⊇ qn. Now we recall that prime ideals of OK are maximal. Hence
pm = qn. Now multiply both sides of (13) by p−1m . As p−1m pm = 〈1〉 (by
Lemma 140) we have

p1p2 . . . pm−1 = q1q2 . . . qn−1.

Now we can apply the inductive hypothesis to complete the proof of
uniqueness. �

Lemma 142. Let p1, . . . , pn be non-zero prime ideals and a = p1p2 · · · pn.
Then a−1 = p−11 p−12 · · · p−1n . Moreover, a−1a = 〈1〉.

Proof. Let b = p−11 p−12 · · · p−1n . From Lemma 140 we have ba = 〈1〉 =
OK . Thus b ⊆ a−1 (by the definition of a−1). However

a−1 = a−1OK = a−1ab ⊆ OKb = b.

Thus b = a−1 as required. �

Theorem 143. Let K be a number field. The set of non-zero fractional
ideals form an abelian group under multiplication, with OK = 〈1〉 being
the identity element.

Proof. It is clear that multiplication of fractional ideals is commu-
tative and associative and that OK = 〈1〉 acts as an identity element.
We must show that every that every non-zero fractional ideal has an
inverse. By Lemma 130, any fractional ideal a can be written in the
form 1

β
b where β ∈ OK and b is an ideal of OK . By the Unique Fac-

torization Theorem and Lemma 142, we know that b−1b = 1. Let
c = β · b−1. This is a fractional ideal and satisfies ca = OK . Thus a
has an inverse. �

9. To Contain is to Divide II

In Section 7 we defined a | b to mean a ⊇ b. We are now able to
rewrite this in a more natural way.

Lemma 144. Let a, b be non-zero ideals of OK. Suppose a ⊇ b. Then
there is an ideal c of OK such that b = ac.

Proof. If a ⊇ b then OK ⊇ ba−1. Thus ba−1 is an ideal of OK and
we simply let c = ba−1. �



CHAPTER 6

Norms of Ideals

1. Definition of Ideal Norm

Recall that any non-zero ideal a has finite index in OK (Theo-
rem 121).

Definition. Suppose that a is a non-zero ideal of OK . We define the
norm of the ideal a by

Norm(a) = #OK/a = [O+
K : a+].

Here a+ is simply a viewed as an additive group.

2. Multiplicativity of Ideal Norms

Lemma 145. Let a be a non-zero ideal and p a non-zero prime ideal.
Then there is some α ∈ a− ap such that

a = 〈α〉+ ap.

Proof. We know that ap ( a. Fix α ∈ a − ap. Let b = 〈α〉 + ap.
Thus we have inclusions

ap ( b ⊆ a.

Multiplying by a−1 we obtain inclusions

p ( ba−1 ⊆ OK .

Thus ba−1 is an ideal of OK strictly containing the maximal ideal p
and so ba−1 = OK so a = b = 〈α〉+ ap. �

Lemma 146. Let a be a non-zero ideal and p be a non-zero prime ideal.
Then

[OK : p] = [a : ap].

Proof. By Lemma 145 there is some α ∈ a−ap such that a = 〈α〉+ap.
Define

φ : OK → a/ap, x 7→ αx+ ap.

It is easy to see that φ is a homomorphism of abelian groups. We will
show that

(i) φ is surjective.
(ii) ker(φ) = p.

57
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Suppose (i), (ii) for now. By the First Isomorphism Theorem,

OK/p ∼= a/ap.

Thus
[O : p] = #OK/p = #a/ap = [a : ap]

which is what we want. Now all we need is to show (i), (ii).
For (i), let β ∈ a. Since a = αOK + ap we can write β = α · x + γ

where x ∈ OK and γ ∈ ap. Hence φ(x) = α · x + ap = β + ap so φ is
surjective.

It is clear that p ⊆ ker(φ). We will show that ker(φ) is an ideal of
OK (the map φ is a homomorphism of abelian groups and not of rings,
so we cannot immediately conclude that ker(φ) is an ideal). Note

ker(φ) = {x ∈ OK : αx ∈ ap} = OK ∩ α−1ap.
This is the intersection of a fractional ideal α−1ap with OK and hence
is an ideal of OK . Since this contains p and p is maximal, we have
ker(φ) = p or ker(φ) = OK . To complete the proof we want to show
the former, so suppose the latter. Hence

OK ∩ α−1ap = OK .
Thus

OK ⊆ α−1ap

and so
αOK ⊆ ap.

This contradicts α /∈ ap. �

Theorem 147 (Multiplicativity of Ideal Norms). (i) Let p1, . . . , pn
be non-zero prime ideals. Then

Norm(p1p2 · · · pn) = Norm(p1) Norm(p2) · · ·Norm(pn).

(ii) Let a, b be non-zero ideals. Then Norm(ab) = Norm(a) Norm(b).

Proof. We prove (i) by induction on n. If n = 1 then both sides are
Norm(p1). Suppose n ≥ 2, and let a = p1p2 · · · pn−1. Then

apn ⊆ a ⊆ OK .
Thus

[OK : apn] = [OK : a] · [a : apn].

By Lemma 146 we know that [a : apn] = [OK : pn]. Hence

[OK : apn] = [OK : a] · [OK : pn].

By definition of ideal norm we can rewrite this as

Norm(apn) = Norm(a) Norm(pn).

Now we simply apply the inductive hypothesis to complete the proof
of (i).

Part (ii) follows from (i) and the unique factorization theorem. �
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3. Computing Norms

Theorem 148. Let K be a number field of degree n and a a non-zero
ideal of OK. Then a+ is a subgroup of O+

K of rank n. Moreover, if
δ1, . . . , δn is a Z-basis for a and ω1, . . . , ωn is an integral basis for OK
then

Norm(a) =

∣∣∣∣ D(δ1, . . . , δn)

D(ω1, . . . , ωn)

∣∣∣∣ .
Proof. By Theorem 121, the index [O+

K : a+] is finite. Thus a+ must
have the same rank as O+

K , which is n. By Theorem 107

∆(a+) = [O+
K : a+]2 ·∆(O+

K).

The theorem follows as

∆(a+) = ∆(δ1, . . . , δn) = D(δ1, . . . , δn)2

and
∆(O+

K) = ∆(ω1, . . . , ωn) = D(ω1, . . . , ωn)2

and [O+
K : a+] = Norm(a). �

The following theorem allow us to compute norms of principal
ideals.

Theorem 149. Let β ∈ OK be non-zero and b = (β) be the principal
ideal generated by β. Then

Norm(b) = |NormK/Q(β)|.
Proof. Let ω1, . . . , ωn be an integral basis for OK . As b = (β) = βOK
it is clear that βω1, . . . , βωn is a Z-basis for b+. Hence by Theorem 148
we have

Norm(b) =

∣∣∣∣D(βω1, . . . , βωn)

D(ω1, . . . , ωn)

∣∣∣∣ .
But

D(βω1, . . . , βωn) =

∣∣∣∣∣∣∣∣
σ1(βω1) σ1(βω2) . . . σ1(βωn)
σ2(βω1) σ2(βω2) . . . σ2(βωn)

...
...

...
σn(βω1) σn(βω2) . . . σn(βωn)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
σ1(β)σ1(ω1) σ1(β)σ1(ω2) . . . σ1(β)σ1(ωn)
σ2(β)σ2(ω1) σ2(β)σ2(ω2) . . . σ2(β)σ2(ωn)

...
...

...
σn(β)σn(ω1) σn(β)σn(ω2) . . . σn(β)σn(ωn)

∣∣∣∣∣∣∣∣
= σ1(β) · · ·σn(β) ·

∣∣∣∣∣∣∣∣
σ1(ω1) σ1(ω2) . . . σ1(ωn)
σ2(ω1) σ2(ω2) . . . σ2(ωn)

...
...

...
σn(ω1) σn(ω2) . . . σn(ωn)

∣∣∣∣∣∣∣∣
= NormK(β) ·D(ω1, . . . , ωn)
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where we have used Theorem 64. Thus Norm(b) = |NormK/Q(β)|. �

Example 150. Let’s see an example of computing the norm of a non-
principal ideal. Let K = Q(

√
15). As 15 is squarefree and 15 6≡ 1

(mod 4), an integral basis for OK is given by 1,
√

15. Let

a = 〈7, 1 +
√

15〉 = 7OK + (1 +
√

15)OK .

Since, as an abelian group,

OK = Z⊕ Z
√

15,

we see that a is spanned, as an abelian group, by 7, 7
√

15, 1+
√

15 and√
15 · (1 +

√
15) = 15 +

√
15. We now switch to Algebra I notation.

Write x1 = 1 and x2 =
√

15. Then OK is the free abelian group with
basis x1, x2 and a the subgroup spanned by

7x1, 7x2, x1 + x2, 15x1 + x2.

Thus

OK/a ∼= 〈x1, x2 | 7x1, 7x2, x1 + x2, 15x1 + x2〉.
To compute the quotient we need the Smith Normal Form of the matrix(

7 0 1 15
0 7 1 11

)
.

This is (exercise) (
1 0 0 0
0 7 0 0

)
.

Thus

OK/a ∼= Z/1Z⊕ Z/7Z ∼= Z/7Z.
Hence Norm(a) = 7. Now we prove that a is not a principal ideal.
Suppose it is. Then a = 〈a+ b

√
15〉 where a, b ∈ Z. Thus

7 = Norm(a) = |Norm(a+ b
√

15)| = |a2 − 15b2|.

Hence a2−15b2 = ±7. This means that a2 ≡ 2 or 3 (mod 5). However,
2, 3 are non-squares modulo 5. Thus we have reached a contradiction.
It follows that a is non-principal.

Warning: The above procedure allows us to compute OK/a as an
abelian group. It doesn’t necessarily tell us what OK/a is as ring. In
the above example we found that OK/a is isomorphic to Z/7Z as an
abelian group. Any ring that is isomorphic to Z/7Z as an abelian group
is also isomorphic to Z/7Z as a ring. Thus OK/a ∼= F7 as a ring.

However if we have an ideal a (in some ring of integers OK) such
that OK/a is isomorphic to Z/2Z × Z/2Z as an abelian group, then
there are two possibilities for OK/a as a ring. It could be isomorphic
to the ring Z/2Z× Z/2Z or to the ring (field in fact) F4.
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Exercise 151. Let f = X3 + X2 − 2X + 8 and let θ be a root of f .
Let K = Q(θ). In Example 111 we showed that 1, θ, (θ2 + θ)/2 is an
integral basis for OK . Let

a = 〈5, 1 + θ〉.
Compute Norm(a).

4. Is this ideal principal?

Lemma 152. Let a ⊆ b be non-zero ideals of OK. Then a = b if and
only if Norm(a) = Norm(b).

Proof. If a = b then clearly Norm(a) = Norm(b). Suppose Norm(a) =
Norm(b). We have inclusions a ⊆ b ⊆ OK . Thus

[OK : a] = [OK : b][b : a].

But [OK : a] = Norm(a) = Norm(b) = [OK : b]. Thus [b : a] = 1.
Hence a = b. �

Lemma 153. Let a be a non-zero ideal of OK. Let α ∈ a. Then a = 〈α〉
if and only if |NormK/Q(α)| = Norm(a).

Proof. As α ∈ a we know that 〈α〉 ⊆ a. By Theorem 149 we have

Norm(〈α〉) = |NormK/Q(α)|.
The lemma now follows from Lemma 152.

Example 154. Let K = Q(
√

15). As 15 is squarefree and 6≡ 1 (mod 4)
we know that a Z-basis for OK is 1,

√
15. Now consider the ideal

a = 〈17, 7+
√

15〉. This has norm 17 (which you can check). Let’s show
that a is non-principal, by contradiction. Suppose it is. Lemma 153
tells us that 17 = |Norm(α)| for some α ∈ a. As α ∈ OK we may write
α = x+ y

√
15 where x, y ∈ Z. Thus

17 = |Norm(α)| = |x2 − 15y2|.
Hence

x2 − 15y2 = ±17.

We will get a contradiction by showing that this equation has no so-
lutions in Z. Reducing modulo 5 we have x2 ≡ ±2 (mod 5). But 2, 3
are non-squares modulo 5, so we have a contradiction.

�





CHAPTER 7

The Dedekind–Kummer Theorem

1. Motivation

Lemma 155. Let K be a number field and let a be a non-zero ideal of
OK. Let a = Norm(a). Then a ∈ a.

Proof. Recall that, by definition, a = Norm(a) = #OK/a. By La-
grange’s Theorem, a · (1 + a) = 0 + a in OK/a. Thus a ∈ a. �

This chapter is about practically factoring ideals as products of
prime ideals. The motivation is provided by the above lemma. Write
a = Norm(a) we have a is a positive rational integer contained in a.
Thus aOK ⊆ a, or in other words, a divides aOK . Now at least we can
factor a in Z as a product of rational primes a = p1p2 . . . pr. Thus a
divides p1OK · p2OK · · · prOK . So a first step to factoring, we want to
factor pOK as a product of prime ideals of OK , for p a rational prime.
The Dedekind–Kummer Theorem lets us write pOK as a product of
prime ideals of OK . Thus we can factor aOK as a product of prime
ideals. Next we can try to workout which of these prime ideals are
actually factors of a.

2. Theorem and Examples

Theorem 156 (Dedekind–Kummer Theorem). Let p be a rational
prime. Let K = Q(θ) be a number field where θ is an algebraic in-
teger. Suppose p - [OK : Z[θ]]. Let

µθ(X) ≡ f1(X)e1f2(X)e2 · · · fr(X)er (mod p)

where the polynomials fi ∈ Z[X] are monic, irreducible modulo p, and
pairwise coprime modulo p. Let pi = 〈p, fi(θ)〉. Then the pi are pairwise
distinct prime ideals of OK and

〈p〉 = pe11 pe22 · · · perr .

Moreover, Norm(pi) = pdeg(fi).

Let’s do some examples of factoring ideals using the Dedekind–
Kummer Theorem.

Example 157. Let K = Q(
√
−30). Then 1,

√
−30 is an integral basis

forOK and soOK = Z[
√
−30]. Since the index [OK : Z[

√
−30]] = 1, we

can factor pOK for any prime p using the Dedekind–Kummer Theorem.

63



64 7. THE DEDEKIND–KUMMER THEOREM

The minimal polynomial for
√
−30 is µ = X2 + 30. Let’s factor pOK

for primes p ≤ 11.
Note that

X2 + 30 ≡ X2 (mod 2).

Thus 2OK = p22 where p2 = 〈2,
√
−30〉. Similarly 3OK = p23 where

p3 = 〈3,
√
−30〉, and 5OK = p25 where p5 = 〈5,

√
−30〉.

Now
X2 + 30 ≡ X2 − 5 (mod 7)

is irreducible modulo 7 (all we have to do is check that 0, 1, . . . , 6 are not
roots modulo 7, or we can use quadratic reciprocity which is quicker).
Thus 7OK = p7 is a prime ideal.

Finally
X2 + 30 ≡ (X + 5)(X + 6) (mod 11).

Hence 11OK = p11 · p′11 where

p11 = 〈11,
√
−30 + 5〉, p′11 = 〈11,

√
−30 + 6〉.

You might wander whether the ideals p2, p3, p5, p7, p11, p′11 are
principal or not. In fact p7 = 7OK so it is principal. Let’s consider
the others. We know that if an ideal a is principal, say a = 〈α〉 then
Norm(a) = |Norm(α)|. This often gives us an easy way of showing that
an ideal is non-principal, or of searching for a generator if we suspect the
ideal is principal. By the last part of the Dedekind–Kummer Theorem,
Norm(p2) = 2deg(X) = 2. Now if p = 〈α〉 then we can write α =
x + y

√
−30 (with x, y integers) and so |Norm(α)| = x2 + 30y2. Since

x2 + 30y2 = ±2 has no solutions in integers we have a contradiction
and so p2 is non-principal. The same applies for p3, p5.

What about p11, p′11? Again by the last part of the Dedekind–
Kummer Theorem,

Norm(p11) = Norm(p′11) = 11.

But the equation x2 + 30y2 = ±11 has no solutions in integers. There-
fore p11, p

′
11 are non-principal.

Example 158. Let K = Q(
√

17). As 17 ≡ 1 (mod 4) we know that
an integral basis is 1, θ with θ = (1 +

√
17)/2. Thus OK = Z[θ]. The

generator θ has minimal polynomial µ = X2−X−4. Let’s factor 2OK .
Here

µ ≡ X2 −X = X(X − 1) (mod 2).

Thus 2OK = p2p
′
2 where p2 = 〈2, θ〉 and p′2 = 〈2, θ − 1〉. Note that

these are distinct prime ideals; the Dedekind–Kummer Theorm already
tells us that. But we can also check that by hand: if p2 = p′2 then θ,
θ − 1 ∈ p2, so 1 ∈ p2, so p2 = OK giving us a contradiction (prime
ideals are proper!). Thus p2 6= p′2.

The assumption p - [OK : Z[θ]] in the Dedekind–Kummer Theorem
is important. If we take φ =

√
17 then [OK : Z[φ]] = 2. So factoring
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X2 − 17 (the minimal polynomial for φ) modulo 2 will not necessarily
give us the correct factorization of 2OK . Indeed, X2 − 17 ≡ (X − 1)2

(mod 2), suggesting that 2OK is the square of a prime ideal, which it
is not. However, if p is an odd prime, then p - [OK : Z[φ]] and so we’ll
obtain the correct answer from factoring X2 − 17 modulo p.

Example 159. Let K = Q(θ) where θ = 3
√

6. You can check that 1, θ,
θ2 is an integral basis for OK and thus OK = Z[θ]. Let’s factor 5OK .
The minimal polynomial for θ is µ = X3 − 6.

To factor 5OK note that

µ ≡ X3 − 1 = (X − 1)(X2 +X + 1) (mod 5).

where the two factors are irreducible. Hence the ideals

p = 〈5, 3
√

6− 1〉, q = 〈5, 1 +
3
√

6 +
3
√

6
2
〉

are prime, and they have norms Norm(p) = 5deg(X−1) = 5 and Norm(q) =

5deg(X2+X+1) = 25. Moreover,

5OK = p · q.
Let’s show that p and q are principal. To do this for p all we have to
do is find an element in p that has norm 5. However 3

√
6−1 is in p and

Norm(
3
√

6− 1) = (
3
√

6− 1)(ζ
3
√

6− 1)(ζ2
3
√

6− 1) = 6− 1 = 5,

where ζ = exp(2πi/3). Thus p = ( 3
√

6−1)OK is principal. What about
q? The easiest way to check that this is principal is to note that

5OK = (
3
√

6− 1)OK · q
thus

q =
(

5/(
3
√

6− 1)
)
· OK .

Now

5/(
3
√

6− 1) = (ζ
3
√

6− 1)(ζ2
3
√

6− 1) =
3
√

6
2

+
3
√

6 + 1.

Thus
q = 〈 3

√
6
2

+
3
√

6 + 1〉.

Next let’s factor 2OK and 3OK and show that the factors are prin-
cipal. Dedekind–Kummer tells us that

2OK = r3, 3OK = s3

where
r = 〈2, 3

√
6〉, s = 〈3, 3

√
6〉,

are prime ideals having norms 2, 3 respectively. Observe that 2− 3
√

6 ∈ r
and has norm

Norm(2− 3
√

6) = (2− 3
√

6)(2− ζ 3
√

6)(2− ζ2 3
√

6) = 8− 6 = 2.

Thus
r = (2− 3

√
6)OK .
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Now to check that s is principal we can use a trick. Note that

(
3
√

6OK)3 = 6OK = 2OK · 3OK = r3 · s3.

Hence (by unique factorization)

3
√

6OK = rs.

Thus

s =
(

3
√

6/(2− 3
√

6)
)
· OK = (3 + 2

3
√

6 +
3
√

6
2
) · OK .

How did we do the division 3
√

6/(2 − 3
√

6)? If you don’t know how to
do this see Homework Assignment 1, Question 11.

3. Proof of the Dedekind–Kummer Theorem

We follow the notation of the theorem.

Lemma 160. Let

I = pZ[X] + fiZ[X].

Then

Z[X]/I ∼= Fp[X]/〈fi〉,

where fi denotes the image of fi in Fp[X] (i.e. the polynomial you
obtain by reducing the coefficents of fi modulo p). In particular Z[X]/I
is a field of size pdeg(fi).

Proof. Let

φ : Z[X]→ Fp[X]/〈fi〉, g 7→ g + 〈fi〉.

This is clearly a surjective ring homomorphism. More g ∈ ker(φ) if and
only if fi | g, which is equivalent to g = h1fi + ph2 for h1, h2 ∈ Z[X].
Thus ker(φ) = I. The isomorphism in the lemma follows from the First
Isomorphism Theorem.

Now consider the quotient Fp[X]/〈fi〉. Since fi is irreducible, this
quotient is a field extension of Fp of degree deg(fi) and hence has
cardinality

#Fp[X]/〈fi〉 = pdeg(fi).

�

Lemma 161. Let

J = pZ[θ] + fi(θ)Z[θ].

Then

Z[θ]/J ∼= Fp[X]/〈fi〉.
In particular Z[θ]/J is a field of size pdeg(fi).
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Proof. In view of Lemma 160, all we have to do is establish an iso-
morphism of rings Z[X]/I ∼= Z[θ]/J . Now let

ψ : Z[X]→ Z[θ]/J, g 7→ g(θ) + J.

This is clearly a surjective ring homomorphism. All we need to do
is show that the kernel is I. Observe g ∈ ker(ψ) iff g(θ) ∈ J iff
g(θ) = ph1(θ)+h2(θ)fi(θ) for some h1, h2 ∈ Z[X]. But this is equivalent
to g− ph1− h2fi being a multiple of µ(X) (the minimal polynomial of
θ. Hence

ker(ψ) = pZ[X] + fiZ[X] + µZ[X].

Clearly I ⊆ ker(ψ). To show equality we need to show that µ ∈ I. But
fi is a factor of µ. Thus µ = h3fi + ph4 for some h3, h4 ∈ Z[X]. Thus
µ ∈ I and so ker(ψ) = I as required. �

Lemma 162. pi is a prime ideal and Norm(pi) = pdeg(fi).

Proof. We will show that OK/pi ∼= Z[θ]/J . In view of Lemma 161
we know OK/pi is a field and so pi is prime; moreover Norm(pi) =
#OK/pi = #Z[θ]/J = pdeg(fi).

Let

ξ : Z[θ]/J → OK/pi, g(θ) + J 7→ g(θ) + pi.

We need to show that ξ is well-defined. But this follows as J ⊆ pi, and
thus if g1(θ)+J = g2(θ)+J then g1(θ)−g2(θ) ∈ J ⊆ pi, and so g1(θ)+
pi = g2(θ) + pi. Hence ξ is well-defined and clearly a homomorphism
of rings. Next we show that ξ is surjective. This is the only place we
use the hypothesis p - [OK : Z[θ]]. Let m = [OK : Z[θ]]. Then there
are a, b ∈ Z such that am+ bp = 1. Let α ∈ OK . Then

α + J = (am+ bp)α + J = amα + J

as p ∈ J . But amα = m(aα) ∈ mOK ⊆ Z[θ]. Thus α + J is in the
image of ξ. Hence ξ is surjective. Finally as Z[θ]/J is a field, ξ is
injective. Thus ξ is an isomorphism. �

Lemma 163. The ideals pi are pairwise distinct.

Proof. Suppose p1 = p2. Then p1 contains p, f1(θ), f2(θ). Now f 1,
f 2 are coprime in Fp[X]. Thus there polynomials g1, g2 ∈ Z[X] such
that

g1(X)f 1(X) + g2(X)f 2(X) = 1.

Thus

g1(X)f1(X) + g2(X)f2(X) = 1 + ph(X)

where h ∈ Z[X]. Thus

1 = g1(θ)f1(θ) + g2(θ)f2(θ)− ph(θ) ∈ p1.

But p1 is a prime ideal and therefore proper, giving a contradiction. �
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Lemma 164. Let g, h ∈ Z[X] be monic polynomials. Then

〈p, g(θ)〉 · 〈p, h(θ)〉 ⊆ 〈p, g(θ)h(θ)〉.

Proof. The ideal 〈p, g(θ)〉 · 〈p, h(θ)〉 is generated by p2, ph(θ), pg(θ)
and g(θ)h(θ). But these are all contained in the ideal 〈p, g(θ)h(θ)〉. �

Proof of Dedekind–Kummer. Let

a =
r∏
i=1

peii .

By Lemma 164, we have

a =
r∏
i=1

〈p, fi(θ)〉ei ⊆ 〈p,
∏

fi(θ)
ei〉.

However ∏
fi(X)ei = µθ(X) + pg(X)

for some polynomial g ∈ Z[X]. Substituting θ and recalling that
µθ(θ) = 0 ∏

fi(θ)
ei = pg(θ).

Thus
a ⊆ 〈p〉.

However,

Norm(a) =
r∏
i=1

Norm(pi)
ei =

r∏
i=1

pei·deg(fi) = p
∑r

i=1 ei·deg(fi) = pn

where n = deg(µθ) = [K : Q]. Moreover,

Norm(〈p〉) = |NormK/Q(p)| = pn.

Since a and 〈p〉 have the same norm and a ⊆ 〈p〉 we conclude that
they’re equal. �



CHAPTER 8

The Class Group

1. Ideal Classes

Definition. Let K be a number field. We know that non-zero frac-
tional ideals of OK form an abelian group under multiplication which
we denote by IK . It is easy to see that the non-zero principal fractional
ideals form a subgroup which we denote by PK . The class group is
defined as the quotient

Cl(K) = IK/PK .

If a is a non-zero fractional ideal, we denote its class in Cl(K) by [a]
(thus [a] is simply the coset aPK). Note that two ideals a, b have the
same class if and only if the fractional ideal ab−1 is principal. This is
equivalent to a = γb for some γ ∈ K.

Theorem 165. OK is a UFD if and only if Cl(K) is trivial.

Proof. If Cl(K) is trivial then every ideal is principal, and so OK is
a PID. Thus OK is a UFD.

Conversely, suppose OK is a UFD. Let a be a non-zero ideal of OK
and let α be a non-zero element of a. As OK is a UFD, there are
irreducible elements π1, . . . , πr of OK such that

α = π1π2 · · · πr.

Let pi = 〈πi〉. It follows that the ideals pi are prime ideals (exercise).
Now

a ⊇ 〈α〉 = p1p2 · · · pr.

Thus a divides p1p2 · · · pr. Without loss of generality (by Lemma 144),

a = p1p2 · · · ps

for some s ≤ r. But the pi are principal so a is principal. Thus OK is
a PID. It follows that Cl(K) is trivial. �

The above illustrates the fact that the class group measures the
failure of unique factorization.

69
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2. Minkowski’s Theorem

Theorem 166. (Minkowski) Let K be a number field of degree n and
signature (r, s). Let

BK =
n!

nn
·
(

4

π

)s
·
√
|∆K |.

Let a be a non-zero ideal of OK. Then a contains a non-zero element
α such that |NormK/Q(α)| ≤ BK · Norm(a).

Minkowski’s Theorem is proved using the geometry of numbers.
The constant BK is called the Minkowski Bound.

To prove Minkowski’s Theorem 166 you need another theorem of
Minkowski! This one is from the Geometry of Numbers, and was proved
in MA257.

Theorem 167. (Minkowski’s Theorem for Lattices) Let S be a com-
pact, convex, symmetric subset of Rn. Let L be a lattice in Zn of index
m. Suppose

2nm ≤ Volume(S).

Then S contains a non-zero element of L.

Proof of Theorem 166. The proof is not hard, but it’s best to un-
derstand it in small dimension first, and then prove it full generality.
So we’ll only do the proof for imaginary quadratic fields and if you’re
interested you can look up the general proof.

Let K be an imaginary quadratic field. In particular K has degree
n = 2, and signature (r, s) = (0, 1). Thus BK = (2/π) ·

√
|∆K |.

We’re given that a is a non-zero ideal. Thus a has a Z-basis con-
sisting of two algebraic integers which we’ll call ω1, ω2. We want to
show the existence of some non-zero α ∈ a such that

(14) |Norm(α)| ≤ 2

π
·
√
|∆K | · Norm(a).

Write α = xω1 + yω2 with x, y ∈ Z. To simplify things (remember-
ing that we’re in a complex quadratic field) write 1

ω1 = a+ bi, ω2 = c+ di, a, b, c, d ∈ R.
The field has the form K = Q(

√
−D) where D > 0. It has two

embeddings σ1, σ2 which respecively send u+v
√
−D to u+v

√
−D and

u − v
√
−D (for any u, v ∈ Q). Note that the first is just the identity

and the second is complex conjugation. Hence

Norm(α) = (xω1 + yω2)(xω1 + yω2)

= ((ax+ cy) + i(bx+ dy))((ax+ cy)− i(bx+ dy))

= (ax+ cy)2 + (bx+ dy)2.

1a, b, c, d don’t have to be rationals. For example in K = Q(
√
−2) with

ω1 = 1 +
√
−2 we take a = 1, b =

√
2.
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Hence we can rewrite (14) as

(15) (ax+ cy)2 + (bx+ dy)2 <
2

π
·
√
|∆K | · Norm(a).

Now recall that ∆(a) = ∆(OK) · [OK : a]2. But ∆(OK) = ∆K and
[OK : a] = Norm(a). Hence√

|∆K | · Norm(a) =
√
|∆(a)|

= |D(a)|,
where D(a) is the determinant

D(a) = D(ω1, ω2) =

∣∣∣∣ω1 ω2

ω1 ω2

∣∣∣∣ = 2i(ad− bc).

Hence we may rewrite (15) as

(ax+ cy)2 + (bx+ dy)2 <
4

π
· |ad− bc|.

All we need to show is there are x, y ∈ Z, not both zero, such that this
inequality is satisfied. Let

S =

{(
x
y

)
∈ R2 : (ax+ cy)2 + (bx+ dy)2 ≤ 4

π
· |ad− bc|

}
.

We will take L = Z2. Thus the index m = [Z2 : L] = 1. All we have to
do is show that there is a non-zero vector in S belonging to Z2 = L. It
is here that we need Minkowski’s Theorem on lattices. All we have to
do is show that S is convex, compact and has volume ≥ 4 (clearly S is
symmetric). Define

T : R2 → R2,

(
x
y

)
7→
(
z
w

)
=

(
ax+ cy
bx+ dy

)
.

Then T is a linear transformation. It has determinant ad − bc. We
know that this is non-zero since ∆(a) = −4(ad − bc)2. Thus T is an
invertible linear transformation (and in particular a homeomorphism).
Moreover,

T (S) =

{(
z
w

)
∈ R2 : z2 + w2 ≤ 4

π
· |ad− bc|

}
.

This is a closed circle and hence compact and convex. As T−1 is a
linear map, it preserves line segments, so S is convex. Moreover, as
it is a homeomorphism, S is compact. We merely have to check that
Volume(S) ≥ 4. Note that∫∫

T (S)

1dzdw = Volume(T (S)) = 4 · |ad− bc|.

The Jacobian of the transformation T is ad− bc. Thus

4 · |ad− bc| =
∫∫

T (S)

1dzdw =

∫∫
S

|ad− bc|dxdy.
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We deduce that

Volume(S) =

∫∫
S

1dxdy = 4.

�

3. Finiteness of the Class Group

Theorem 168. Let K be a number field of degree n and signature (r, s).

(I) Cl(K) is finite.
(II) Cl(K) is generated by the set of classes

(16) {[p] : p is a prime ideal, Norm(p) ≤ BK} .

We define the class number of K as hK = # Cl(K). Part (I) of
the theorem tells us that hK <∞.

Before proving Theorem 168 we need the following lemma.

Lemma 169. Let B > 0. The number of ideals of OK of norm ≤ B is
finite.

Proof. The norm of an ideal is a positive integer. Thus it is enough
to show, for each integer A in the range 1 ≤ A ≤ B, that the number of
ideals a of norm A is finite. Suppose Norm(a) = A. Then A = #OK/a.
By Lagrange A · (1 +a) = 0 +a. Hence A ∈ a. Thus 〈A〉 ⊆ a we means
a | 〈A〉. By unique factorisation and Lemma 144 there are only finitely
many possibilities for a. �

Proof of Theorem 168. Let b be a non-zero fractional ideal ofOK .
Then b = 1

β
a where a is an ideal of OK and β ∈ OK . Hence [b] =

[a]. By Minkowski’s Theorem, there is a non-zero α ∈ a such that
|Norm(α)| ≤ BK · Norm(a).

However 〈α〉 ⊆ a thus a | 〈α〉. Hence we can write 〈α〉 = ac for
some ideal c of OK . Moreover, by the multiplicativity of norms

Norm(c) = Norm(〈α〉)/Norm(a) = |Norm(α)|/Norm(a) ≤ BK .

Moreover [c] · [a] = [〈1〉]. Thus [b] = [a] = [c]−1. Hence

Cl(K) = {[c]−1 : c is an ideal of OK of norm ≤ BK}.

As there are only finitely many ideals of a given norm, this proves (I).
Now, c = p1 . . . pr where the pi are prime ideals. Moreover Norm(pi) |

Norm(c), so Norm(pi) ≤ BK and

[c]−1 = [p1]
−1 · · · [pr]−1.

Thus the set (16) generates Cl(K). �
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4. Examples of Computing Class Groups

Lemma 170. Let p be a non-zero prime ideal of OK. Then there is a
unique rational prime p such that p | pOK. Moreover, Norm(p) = pf

for some positive integer f .

We call p the prime below p. We say that p is a prime ideal of OK
above p. We call f the degree of p.

Proof. As p is a maximal ideal, we know that OK/p is a finite field,
say Fq. From Algebra II we know q = pf for some rational prime p and
positive integer f . Hence Norm(p) = #Fq = q = pf .

Now we make use of the fact that Norm(p) ∈ p (Lemma 155). Thus
pf ∈ p. As p is a prime ideal, p ∈ p. Thus pOK ⊆ p and so p | pOK .

All that is left if the proof of uniqueness. Suppose p1, p2 are distinct
rational primes such that p | piOK . Then p1, p2 ∈ p. By Euclid (or
Bezout as some call it), there are a, b ∈ Z such that ap1 + bp2 = 1.
Thus 1 ∈ p contradicting the fact that prime ideals are proper, and
therefore proving uniqueness. �

Note: Because of this lemma, to compute the set of classes (16), we
merely have to list the rational primes p ≤ BK , factor each pOK (using
Dedekind–Kummer), and keep only those prime ideal factors whose
norm is at most BK .

Example 171. We compute the class group for K = Q(i). Then
OK = Z[i], ∆K = −4, n = 2 and (r, s) = (0, 1). Thus the Minkowski
bound is BK = (2!/22) · (4/π)1 ·

√
4 = 4/π < 2. We need to factor pOK

for rational prime p < 2. There are no such primes. Thus Cl(K) is
generated by the empty set of ideal classes, and so Cl(K) = {1} (thus
hK = 1). This tells us that OK is a PID.

Now let’s see an application of this. Let p ≡ 1 (mod 4) be a prime.
Quadratic reciprocity tells us that −1 is a quadratic residue modulo p.
Hence the minimal polynomial µ = X2 + 1 for i factors as a product
of two linear factors modulo p. By the Dedekind–Kummer Theorem,
〈p〉 = pp′ where p, p′ are prime ideals with Norm(p) = Norm(p′) = p.
But as OK is a PID, we can write p = 〈x + iy〉 where x, y ∈ Z.
Therefore

p = Norm(p) = |x2 + y2| = x2 + y2

and we recover the familiar fact from Introduction to Number Theorem:
any prime p ≡ 1 (mod 4) can be written as the sum of two squares.

Example 172. We compute the class group for K = Q(
√

7). Then
OK = Z[

√
7], ∆K = 28, n = 2 and (r, s) = (2, 0). Thus the Minkowski

bound is BK = (2!/22)·(4/π)0 ·
√

28 =
√

7 < 3. The only rational prime
p ≤ BK is p = 2. We factor the ideal 〈2〉 using Dedekind–Kummer.
We have

X2 − 7 ≡ (X − 1)2 (mod 2).
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Thus 〈2〉 = p22 where p2 = 〈2,
√

7 − 1〉. The prime ideal p2 has norm
2 ≤ BK . Thus Cl(K) is generated by {[p]}. We note that p contains
the element 3 +

√
7 = 2 × 2 + (

√
7 − 1) of norm 9 − 7 = 2. Thus

p2 = 〈3 +
√

7〉. So [p2] = 1 (the trivial ideal class). Thus Cl(K) = {1}
and so hK = 1.

Example 173. We compute the class group of K = Q(
√
−30). As

−30 is squarefree, 6≡ 1 (mod 4) we know that 1, θ =
√
−30 is an

integral basis. In particular OK = Z[θ] so [OK : Z[θ]] = 1. Moreover
θ has minimal polynomial µ = X2 + 30. Now ∆K = −120, n = 2,
(r, s) = (0, 1). Thus

BK =
2!

22
· (4/π)1 ·

√
120 = 6.97 . . . .

Thus Cl(K) is generated by

{[p] : p is a prime ideal, Norm(p) ≤ BK}.
But Norm(p) = pd for some rational prime p and some d ≥ 1. Thus we
need to factor the primes p ≤ BK , i.e. p = 2, 3, 5. However µ ≡ X2

(mod p) for any of these 3 primes. By the Dedekind–Kummer Theorem
the ideals

p2 = 〈2, θ〉, p3 = 〈3, θ〉, p5 = 〈5, θ〉
are prime and 〈p〉 = p2p for p = 2, 3, 5. Thus these classes have

order dividing 2 in Cl(K). Moreover Norm(p2) = 2deg(X) = 2. If p2 is
principal then p2 = 〈x+ yθ〉 some integers x, y and then |x2 + 30y2| =
Norm(p2) = 2 which is impossible. Thus p2 is not principal. Likewise
p3, p5 are not principal as the equations |x2 + 30y2| = 3, 5 have no
solutions. Thus [p2], [p3], [p5] all have order 2. Also p2p3 is non-
principal as it has norm 6, and the equation |x2 + 30y2| = 6 has no
solutions. Thus [p2p3] 6= 1 and so [p2] 6= [p3]. Finally, θ2 = −2× 3× 5
and so 〈θ〉2 = p22p

2
3p

2
5 so

p2p3p5 = 〈θ〉.
Thus [p2][p3][p5] = 1 so [p5] = [p2]

−1[p3]
−1 = [p2][p3].

Thus Cl(K) ∼= C2 × C2. Hence hK = 4.

Example 174. We will work out the class group for K = Q(
√
−23),

leaving some of the details to you. Note OK = Z[θ] where θ = (1 +√
−23)/2 has minimal polynomial X2−X + 6. The Minkowski bound

BK ≈ 3.05. Thus 2OK = p2p
′
2 and 3Ok = p3p

′
3 where

p2 = 〈2, θ〉, p′2 = 〈2, θ − 1〉, p3 = 〈3, θ〉, p′3 = 〈3, θ − 1〉.
Moreover, p2, p

′
2 both have norm 2 and p3, p

′
3 both have norm 3. We

know that the class group is generated by [p2], [p′2], p3, p
′
3.

Let’s α ∈ OK and write α = x+ yθ with x, y ∈ Z. Then

Norm(α) = Norm((x+ y/2) + y
√
−23/2) = (2x+ y)2/4 + 23y2/4.
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If p2 = 〈α〉 is principal then taking norms we have

(2x+ y)2 + 23y2 = 8

which is impossible. Similarly p′2, p3, p
′
3 are not principal. Now let’s

check p22. If p22 = 〈α〉 is principal then

(2x+ y)2 + 23y2 = 16

which gives us x = ±2 and y = 0, so α = ±2. But then 2OK = p22 which
we know to be false as p2, p

′
2 are distinct prime ideals by Dedekind–

Kummer. We persevere and check p32. Here

p32 = 〈2, θ〉 · 〈4, 2θ, θ2〉
= 〈2, θ〉 · 〈4, 2θ, θ − 6〉
= 〈2, θ〉 · 〈4, 2θ, θ + 2〉
= 〈8, 4θ, 2θ + 4, 2θ2, θ2 + 2θ〉
= 〈8, 4θ, 2θ + 4, 2θ − 12, 3θ − 6〉
= 〈8, 4θ, 2θ + 4, 2θ − 12, θ + 6〉
= 〈8, 4θ, 2θ + 4, 2θ − 12, θ − 2〉
= 〈8, 8, 8,−8, θ − 2〉
= 〈θ − 2〉

as 8/(θ − 2) = −1− θ ∈ OK . We see that [p2] is an element of order 3
in Cl(K). Moreover,

[p2][p
′
2] = [〈2〉] = 1

so [p′2] = [p2]
−1 = [p2]

2. In the same way [p′3] = [p3]
−1]. All that

remains is to relate [p2] and [p3]. However,

p2p3 = 〈6, 2θ, 3θ, θ2〉
= 〈6, θ〉
= 〈θ〉

as 6/θ = 1 − θ. Thus [p3] = [p2]
−1. Hence Cl(K) is cyclic of order 3

generated by [p2].





CHAPTER 9

Units

1. Revision

Let R be a ring. Recall that a unit in R is an element u such that
uv = 1 for some other v ∈ R. The set of units is denoted by R∗ and is
a multiplicative group called the unit group of R. For example, if K
is a field then K∗ = {a ∈ K : a 6= 0}. But Z∗ = {1,−1}.

2. Units and Norms

Let K be a number field. We shall denote O∗K by U(K) and call it
the unit group of K (even though it is really the unit group of OK).

Proposition 175. Let K be a number field. Then

U(K) = {α ∈ OK : NormK/Q(α) = ±1}.

Proof. Let u be a unit in OK . By definition there is some v ∈ OK
such that uv = 1. By the multiplicativity of norms we get NormK/Q(u)·
NormK/Q(v) = 1. But the norm of an algebraic integer is a rational
integer. Thus NormK/Q(u) = ±1.

Conversely, suppose NormK/Q(α) = ±1. Let α1, . . . , αn be the con-
jugates of α and recall that

NormK/Q(α) = α1α2 · · ·αn.
Without loss of generality, α = α1. Let

β = α2α3 · · ·αn.
Note that the αi do not necessarily belong to K, but β = ±1/α ∈ K.
Moreover, the αi are algebraic integers (being conjugates of an algebraic
integer α). Thus β ∈ K ∩ O = OK . Now α · (±β) = 1 showing that α
is a unit. �

3. Units of Imaginary Quadratic Fields

Theorem 176. Let K = Q(
√
−d) where d is squarefree and d > 0.

Then

(i) If K = Q(i) then U(K) = {±1,±i}.
(ii) If K = Q(

√
−3) then U(K) = {±1,±ζ,±ζ2} where ζ = (−1+√

−3)/2 = exp(2πi/3).
(iii) In all other cases U(K) = {1,−1}.

77
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Proof. Suppose first that −d 6≡ 1 (mod 4). Then

OK = Z · 1⊕ Z ·
√
−d.

Let α ∈ OK . Then α = a + b
√
−d where a, b ∈ Z. This is a unit if

and only if Norm(α) = ±1 or equivalently a2 + d · b2 = 1. If d > 1 then
b = 0 and a = ±1, so α = ±1. If d = 1, then a2 + b2 = 1 and the only
solutions are (a, b) = (±1, 0), (0,±1). In this case K = Q(i) and the
units are a+ bi = ±1, ±i.

Suppose now that −d ≡ 1 (mod 4). Then every element of OK
can be written as a + b

√
−d where a, b are both integers or a, b are

both halves of odd integers. If α = a + b
√
−d is a unit, and a, b

are both integers, then the argument above tells us that α = ±1.
We consider a = r/2, b = s/2 where r, s are odd integers. Then
r2 + ds2 = 4. As s is odd, we have s2 ≥ 1 and so 4 ≥ ds2 ≥ d. But
d ≡ 3 (mod 4) and so d = 3. Thus r2 + 3s2 = 4. The only solutions
in odd integers are (r, s) = (±1,±1). In this case K = Q(

√
−3) and

α = (±1±
√
−3)/2. �

We’ll see later that rings of integers of real quadratic fields have
infinitely many units. For now you can check this for Q(

√
2).

Exercise 177. Show that 1 +
√

2 is a unit of Z[
√

2]. Deduce that
Z[
√

2] has infinitely many units.

4. Units of Finite Order

Let K be a number field. We define

η(K) = {ε ∈ U(K) : ε has finite multiplicative order}.

We call η(K) the torsion unit group of K. For example, from the
previous section we know that

η(Q(i)) = U(Q(i)) = {1, i,−1,−i}.

Lemma 178. η(K) is a finite subgroup of U(K).

Proof. Note U(K) is an abelian group. Thus the set η(K) is in fact
the torsion subgroup of U(K). We need to show that U(K) is finite.
Now if ζ in U(K) has order m, then ζ is a primitive m-th root of unity.
Let ω1, . . . , ωn be an integral basis for OK . Then

(17) ζ = a1ω1 + · · ·+ anωn

where the ai ∈ Z. Let σ1, . . . , σn be the embeddings K ↪→ C. Thus

σi(ζ) =
n∑
j=1

ajσi(ωj)
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for i = 1, . . . , n. Let A = (σi(ωj)). Then det(A)2 = D(ω1, . . . , ωn)2 =
∆(ω1, . . . , ωn) 6= 0 by Theorem 75. In particular, A is invertible. Let
A−1 = (bi,j). Then

aj =
n∑
i=1

bi,jσi(ζ).

But σi(ζ) is a root of unity so |σi(ζ)| = 1, so

|aj| ≤ C · n
where C = max|bi,j|. As C and n are fixed, there are only finitely many
possibilities for the integer coefficients aj in (17). Thus there are only
finitely many possibilities for ζ. This completes the proof. �

Theorem 179. Let K be a number field. Then η(K) = 〈ζ〉 where ζ is
a root of unity.

Warning: Here the notation η(K) = 〈ζ〉 means that ζ is a generator
for the multiplicative group η(K). It does not mean that η(K) is a
principal ideal! The set η(K) is not an ideal at all.

Proof of Theorem 179. We know that η(K) is finite by Lemma 178.
By the Fundamental Theorem of Abelian Groups,

η(K) ∼= Cd1 × Cd2 × · · · × Cdr
where d1 | d2 | · · · | dr. Note that the order of η(K) is d = d1d2 · · · dr,
but every α ∈ η(K) satisfies αdr = 1. Thus all elements of η(K) are
roots of Xdr − 1. But Xdr − 1 has at most dr roots. Hence

d1d2 · · · dr = d = #η(K) ≤ dr.

This can only happen is d1 = d2 = · · · = dr−1 = 1 and d = dr = #η(K).
Thus η(K) ∼= Cd and its elements are in fact the roots of Xd−1. Hence
η(K) = 〈ζ〉 where ζ = exp(2πi/d). �

Theorem 180. Let K have at least one real embedding σ : K ↪→ R.
Then η(K) = {1,−1}.

Proof. Let ζ be a cyclic generator of η(K). Then ζd = 1 and thus
σ(ζ)d = 1. The only real roots of unity are ±1. Thus σ(ζ)2 = 1 and so
σ(ζ2) = 1. But σ is injective (it’s an embedding!) and so ζ2 = 1 and
hence ζ = ±1. Thus η(K) = {1,−1}. �

5. Dirichlet’s Unit Theorem

Theorem 181 (Dirichlet’s Unit Theorem). Let K be a number field
of signature (r, s) and write t = r + s − 1. Then U(K) is a finitely
generated group of rank r + s − 1. More precisely, there are units
ε1, . . . , εt such that every ε ∈ U(K) can be written uniquely as

ε = ω · εn1
1 ε

n2
2 · · · εnt

t

where ω ∈ η(K) and ni ∈ Z.
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Example 182. In this example we shall show that the unit group for
K = Q(

√
2) is

(18) U(K) = {±(1 +
√

2)m : m ∈ Z}
with the help of Dirichlet’s Unit Theorem. Since

√
2 has minimal

polynomial X2 − 2 which has two real roots, we see that K has two
real embeddings and no complex ones; in particular K has signature
(2, 0). Thus the rank of U(K) is t = 2 + 0 − 1 = 1. Moreover, by
Theorem 180 we know that η(K) = {1,−1}. Thus by Dirichlet’s Unit
Theorem there is some unit ε (called ε1 in the theorem) such that every
unit can be written uniquely as ±εm for some m ≥ 1. Thus

(19) U(K) = {±εm : m ∈ Z}.
Replacing ε by ε−1 does not affect (19). Thus we may suppose that
|ε| ≥ 1.

Now 1 +
√

2 ∈ OK = Z[
√

2] and has norm 1 − 2 = −1 and so is a
unit. Thus 1 +

√
2 = ±εn for some n ∈ Z. Moreover, as 1 +

√
2 > 1

and |ε| ≥ 1 we have n ≥ 1. If n = 1 then (18) follows. Thus suppose
n ≥ 2. Write ε = a+ b

√
2 with a, b ∈ Z. Thus

1 +
√

2 = ±(a+ b
√

2)n.

To this we apply the embeddings σ1, σ2 : K ↪→ R which are given by
σ1(u+ v

√
2) = u+ v

√
2 and σ2(u+ v

√
2) = u− v

√
2 for u, v ∈ Q. We

obtain,

1 +
√

2 = ±(a+ b
√

2)n, 1−
√

2 = ±(a− b
√

2)n.

Hence

|a+ b
√

2| ≤ |1 +
√

2|1/n, |a− b
√

2| ≤ |1−
√

2|1/n.
By the triangle inequality

|b| ≤ 1

2
√

2

(
|1 +
√

2|1/n + |1−
√

2|1/n
)
.

We shall need approximate values for 1+
√

2 and 1−
√

2. To 1 decimal
place we have

|1 +
√

2| ≈ 2.4 . . . , |1−
√

2| ≈ 0.4 . . . .

As n ≥ 2 we know that

|1 +
√

2|1/n ≤ |1 +
√

2|1/2 ≤ (2.5)1/2 ≤ 1.6,

and
|1−
√

2|1/n < 1.

Thus

|b| ≤ 1.6 + 1

2
√

2
< 1.

Therefore b = 0. But a2 − 2b2 = Norm(ε) = ±1. This forces ε = a =
±1, giving a contradiction. Thus n = 1 and so (18) holds.
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The number field Q(
√

2) is a real quadratic field. The units of
real quadratic fields can be computed rather efficiently using continued
fractions. However the continued fraction method is not useful for
number fields of higher degree.

Exercise 183. Let K = Q( 3
√

2). Show that 1, 3
√

2, 3
√

2
2

is an integral
basis for OK . Show that

U(K) = {±(
3
√

2− 1)n : n ∈ Z}.
You may need to use WolframAlpha, MATLAB or a similar package to
compute approximations to the embeddings of some algebraic numbers.





CHAPTER 10

Some Diophantine Examples

Lemma 184. Let α, β be non-zero elements of OK and suppose αOK =
βOK. Then α = εβ for some ε ∈ U(K).

Proof. As αOK = βOK we have α = βε and β = αε′ for some ε,
ε′ ∈ OK . But then εε′ = 1 and so ε is a unit. �

Lemma 185. Let n be a positive integer. Let a, b, c be non-zero ideals
satisfying ab = cn. Suppose a, b are coprime. Then there are ideals
c1, c2 such that

a = cn1 , b = cn2 , c1c2 = c.

Proof. As a, b are coprime, they have no common prime ideal divisor.
Let

c = pr11 · · · p
rk
k

where the pi are distinct primes. Then

ab = cn = pnr11 · · · p
nrk
k .

Since a, b have no common prime divisor, we may rearrange the pi so
that p1, . . . , p` divide a but not b, and p`+1, . . . , pk divide b but not a.
Hence

a = pnr11 · · · p
nr`
` , b = p

nr`+1

`+1 · · · p
nrk
k .

Letting

c1 = pr11 · · · p
r`
` , c2 = p

r`+1

`+1 · · · p
rk
k

completes the proof. �

Exercise 186. Give a counterexample (with K = Q) to show that
Lemma 185 does not hold without the coprimality assumption.

Example 187. Determine all solutions to the equation x2 + 2 = y3

with x, y ∈ Z.
Answer: There is a standard strategy for solving such problems which
involves factoring in quadratic fields. The field we need for this problem
is K = Q(

√
−2). Here OK = Z[

√
−2], and Cl(K) = {1} (check).

Suppose x, y ∈ Z and satisfy x2 + 2 = y3. If either x or y is even
then both are even and 4 divides y3 − x2 = 2 giving a contradiction.
Thus they’re both odd.

Now

(x+
√
−2)(x−

√
−2) = y3.

83
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We shall show that the ideal a = (x +
√
−2)OK is the cube of an

ideal. Let b = (x −
√
−2)OK and c = yOK . Then ab = c3. Let’s

show by contradiction that a and b are coprime. So suppose p be a
prime ideal dividing both a, b. Then p divides (i.e. contains) (x +√
−2) − (x −

√
2) = 2

√
−2 = −(

√
−2)3. Thus p divides

√
−2OK .

But
√
−2OK is a prime ideal (you get this from factoring 2OK using

Dedekind–Kummer). As non-zero prime ideals are maximal, we get
p =
√
−2OK . However p | yOK and so Norm(p) | y2 and so y is even

giving a contradiction. Hence a, b are coprime.
By Lemma 185 we have a = c31 for some ideal c1. However, Cl(K) =

{1} so c1 is principal, and we may write c1 = (u+ v
√
−2)OK for some

u, v ∈ Z. Hence

(x+
√
−2)OK = (u+ v

√
−2)3OK .

By Lemma 184 we have

x+
√
−2 = ε(u+ v

√
−2)3

where ε ∈ U(K) = {±1}. After possibly changing the signs of u, v we
have

x+
√
−2 = (u+ v

√
−2)3 = (u3 − 6uv2) + (3u2v − 2v3)

√
−2.

Comparing coefficients of
√
−2 we have v(3u2−2v2) = 1. Hence v = ±1

and 3u2 − 2v2 = ±1. The only solutions are (u, v) = (±1, 1). Hence
x = u3 − 6uv2 = ±5. Since x2 + 2 = y3 we see that the only solutions
are (±5, 3).

Example 188. Let p be an odd prime and suppose that −23 is a square
modulo p. Show that either p or 2p can be written as x2 +xy+ 6y2 for
some integers x, y.
Answer: The key to this is to spot that x2 + xy + 6y2 is a norm.
Indeed, completing the square, we have

x2 + xy + 6y2 = (x+ y/2)2 + 23y2/4 = NormK/Q(x+ yθ)

where θ = (1 +
√
−23)/2 and K = Q(

√
−23). As −23 ≡ 1 (mod 4) we

know that OK = Z[θ]. Hence all we have to do is show that either p or
2p is the norm of some element of OK .

Note that [OK : Z[
√
−23]] = 2, and so not divisible by p. Thus we

may apply the Dedekind–Kummer Theorem to factor pOK by factoring
X2 + 23 modulo p. We are given that −23 is a square modulo p.
Thus X2 + 23 is the product of two linear factors modulo p and hence
pOK = pp′ where p, p′ are both prime ideals of norm p. If p is principal,
say 〈x+yθ〉 with x, y ∈ Z, then p = x2 +xy+6y2 as required. Suppose
p is not principal. We know from Example 174 that the class group
is cyclic of order 3 with the two non-trivial classes being [p2] and [p′2]
where p2, p

′
2 are ideals of norm 2. Thus either p2p or p′2p is principal.

Thus 2p = x2 + xy + 6y2 for some x, y ∈ Z.


