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& Warning: some of the mathematics will be only approximately correct.
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& Warning: some of the mathematics will be only approximately correct.

“In mathematics you don't understand things. You just get used
to them.”

John von Neumann
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Basic Philosophy
A Basic Philosophy of Arithmetic Geometry: The geometry of an

algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry
govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine or
projective space. An affine variety V < A" defined over a field k is given
by a system of polynomial equations

f1(X1,...,X,,) = 0,
vV : fi€ k[x1,...,Xn)-
fn(X1,...,%2) =0,

For L 2 k, the set of L-points of V is

V(L)={(a1,...,an) € L" : fi(a1,...,an) =0 for i=1,...,m}.



A projective variety V cP" defined over k is given by a system of
polynomial equations

fi(XO»---an) :0y
vV : fi € k[xo,...,xn] are homogeneous.

fm(Xo,..‘,Xn):O,
For L 2 k, the set of L-points of V is
V(L)=1{(ao,...,an) € L""\{0} : fi(ap,...,an) =0 for i=1,...,m}/ ~,

where (ag,...,an) ~ (bo,...,an) if there is some A € L* such that Aa; = b; for
i=0,...,n.

A variety V cP" is covered by n+1 affine patches:

Vnix=1} i=0,1,...,n.



Dimension

We classify varieties by dimension, a non-negative integer: 0,1,2,....
Fact

A variety V < A" or P", defined by a single polynomial equation V : f =0,
where f is a non-constant polynomial, has dimension n—1.

Example
Vi cAl Vi : x3+x+1=0 has dimension 0.
Vo c A2, Vs y2 =x%+1, has dimension 1.
V5 cP?, Vs : x3+y3+23=0, has dimension 1.
V, cP3, Ve x3+y3+22+wl=0, has dimension 2.

Varieties of dimension 1,2,3,... are called curves, surfaces, threefolds,
etc.



Smooth

Let V be an affine variety V < A" of dimension d, defined over a field k,
and given by a system of polynomial equations

f1(X1,...,Xn) = 0,
V. : fi€ k[x1,...,Xn)-
fn(X1,...,%7) =0,

We say that P e V/(k) is smooth if the matrix

fi
rank(a—(P)) =n-d.
aXJ i=1,...m,j=1,..,n

Pe v(k).

We say that V is smooth or non-singular if it is smooth at all points

If V<P", we say that V is smooth if all the affine patches V n{x; =1} are
smooth.



Example

Let
C:y*=f(x) (hyperelliptic curve)

where f is a non-constant polynomial. Then P =(a,b) € C is singular iff
(2a —f'(b)) =(00).

So
2a=0, a’=f(b), f'(b)=0.

If char(k) #2, then f(b)=f'(b)=0. So C has a singular point if and only
if Disc(f) =0. So C is smooth iff Disc(f) #0.




Example
Let V cP" (defined over k) be given by

V : f(xo,..-»%n) =0,

where f #0 is homogeneous. Then V is singular if and only if there is

P e V (k) such that
of of
2 (P)=-=—(P)=0.
0x1 ) Ox,,( )




Curves

We will restrict to curves.
Definition

By a curve C over a field k, we mean a smooth, projective, absolutely
irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C/Q, we want to understand C(Q).



Example: Reducibility

Example

Consider the variety V c A2 given by the equation
V:xb-1=y2+2y.
Can rewrite as
Vi(y+1-x3)(y+1+x3) =0.

So
V=ViuV,

where
V1:y+1—x3:0, Vg:y+1+x3:O.

Note V is reducible, but V4 and V; are irreducible. To understand V(Q)
enough to understand V4 (Q) and V,(Q).




Example: Absolute Reducibility

Example
V:2x0—1=y?+2y.

V is irreducible, but absolutely reducible since
V@:{y+1+\/§X3:O}U{y+1—\/§X3=O}.
If (x,y) € V(Q) then
y+l+vV23=y+1-Vv2x3=0.

In other words

So V(Q)=1{(0,-1)}.

Moral: To understand rational points on varieties, it is enough to
understand rational on absolutely irreducible varieties.



Function Fields

Let V < A" be an absolutely irreducible affine variety defined over k by the
equations

f(x,...,xn) =0,
vV : fi€ k[x1,...,Xn)-
fm(X1,...,%7) =0,
The affine coordinate ring of V is given by

k[V] = k[Xl!“-)Xn]/(fl;---»fm)-
The function field k(V) of V is the field of fractions of k[V].

If V <P" then its function field is the function field of any affine patch.

Example

k[A"] = k[x1,...,Xn], k(A™) = k(x1,.-.,Xn),
k(P™) = k(P"n{xo=1}) = k(x1,...,%n).




Function Fields

Let V < A" be an absolutely irreducible affine variety defined over k by the
equations

f1(X1,...,Xn) = 0,
V. : fi€ k[x1,...,Xn)-
fm(X1,...,%7) =0,

The affine coordinate ring of V is given by

k[V]=k[x1,...,xn]/(f1,-., Fm).

The function field k(V) of V is the field of fractions of k[V].

If V <P" then its function field is the function field of any affine patch.

Example
C:y*’=f(x) fek[x]\k,  disc(f) #0.
KICl= kI yl/ (Y2 =£(x)), k(€)= k(x)(y/f(x))-




Function Fields

Let V < A" be an absolutely irreducible affine variety defined over k by the
equations
fi(X].!-'-;Xn) = 0»

V. : fi€ k[x1,...,Xn)-
fm(X1,...,%7) =0,

The affine coordinate ring of V is given by

k[V]=k[x1,...,xn]/(F1,--., Fm).

The function field k(V) of V is the field of fractions of k[V].
If V <P" then its function field is the function field of any affine patch.
Example (Why do we want irreducibility?)

V cA? V:xix2=0, k[V] = k[x1,x2]/(x1x2)-

x1, xz are zero divisors in k[V] so it isn't an integral domain.




Genus

We classify curves by genus. This is a non-negative integer: 0,1,2,....

Example
If
C/k: F(x,y,z)=0, CcP?

is smooth, where F € k[x, y, z] is homogeneous of degree n, then C has
genus (n—1)(n—-2)/2.

Example
Let

C/k : y?=f(x), CcA? (f € k[x] non-constant).
If C is smooth and deg(f) = n then

(d-1)/2 d odd

genus(C) = {(d—2)/2 d even.




Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k. Then C is isomorphic (over k)
to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if C(k)# @
then C is isomorphic over k to PL.

Theorem

(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

0 C(Q)#¢;
Q@ C(R)#@ and C(Qp) # @ for all primes p.




Theorem

(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

0 C(Q)#0;
Q C(R)#@ and C(Qp) # @ for all primes p.

Theorem (Legendre, Hasse)
Let

C:ax’+by’>+cz2=0, a, b, ¢ non-zero, squarefree integers.

The following are equivalent:
QO C(Q)#9;
Q@ C(R)#@ and C(Qp)# @ for all primes p.
© C(R)#@ and C(Qp)# @ for all primes p|2abc.




Genus 1

Theorem

If C is a curve of genus 1 over a field k and Py e C(k), then C is
isomorphic over k to a Weierstrass elliptic curve

Y2z + aixyz + a3yz® = X3 + apx?z + agxz® + ag 2> cP?,
where the isomorphism sends Py to (0:1:0).

(Mordell-Weil) Moreover, if k =Q or a number field, then C(k) is a finitely
generated abelian group with Py as the zero element.

@ There is no known algorithm for deciding if C(Q) # @.

@ There is no known algorithm for computing a Mordell-Weil basis for
C(Q) if it is non-empty.

But there is a descent strategy that usually works (Steffen’s lectures).




Genus =2

Theorem (Faltings)

Let C be a curve of genus =2 over a number field k. Then C(k) is finite.

© There is no known algorithm for computing C(k).

@ There is no known algorithm for deciding if C(k) # @.
But there is a bag of tricks that can be used to show that C(k) is empty,
or determine C(k) if it is non-empty. These include:

@ Local Methods (Michael’s Lectures).

@ Quotients (Michael's Lectures).

© Descent (Michael’s Lectures).

Q@ Chabauty.

© Mordell-Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and
see it applied in some example.



Divisors
Let C be a curve over k. A divisor D on C is a formal linear combination
n p—
DZZQ/P,', aje”’, P,'€C(k).
i=1

We define the degree of D to be ¥ a;.

Example
Let

C:y?=x(x®*+1)(x3+1).
Let

Dy =2-(0,0)+(L2), Do=(i,0)=(~i,0), Ds=(i,0)+(~i,0)-2(1,2).

Then
deg(D1) =3, deg(D») =0, deg(Ds3) =0.




We say that D is rational if it is invariant under Gal(k/k).

Example

Let
C/Q: y?=x(x*+1)(x3+1).

Let
D1 =2-(0,0)+(1,2), Dy=(i,0)-(-i,0), D3=(i,0)+(-i,0)-2-(1,2).

Then D; is rational, Ds is rational, D, is not rational.

Definition
Let
Div®(C/k) := {rational degree 0 divisors}.

This is an abelian group.

In the example D3 € Div®(C/k), but Dy, Dy ¢ DivP(C/k).




Principal Divisors

Let k(C) be the function field of C, and let f € k(C). If P C(k) then

there is vp(f) € Z which measures the order of vanishing of f at P.
Define

div(f)= Y. wvp(f)-P.

PeC(k)
Then div(f) e DivO(C/k).

Example

Let f = 227 on PL. Then

x3

div(f) ==3-(0)+ (V7) +(=V7)




Principal Divisors

Let k(C) be the function field of C, and let f € k(C). If P C(k) then

there is vp(f) € Z which measures the order of vanishing of f at P.
Define

div(f)= Y. wvp(f)-P.

PeC(k)
Then div(f) e DivO(C/k).

Example

Let f = 227 on PL. Then

x3

div(f) = =3-(0) + (V7) + (-V7) + 0.




Picard Group

Define

Princ(C/k):={div(f): f e k(C)"} principal divisors.

This is an abelian group (note div(fg) =div(f)+div(g)). Also
Princ(C/k) = Div%(C/k). We define the Picard group of C/k as

iv0
Pic%(C/k) := %.

Example

Pic’(P!/k) = 0.




Define

Princ(C/k) :={div(f): f € k(C)}.
This is an abelian group (note div(fg) =div(f) +div(g)). Also
Princ(C/k) < Div®(C/k). We define the Picard group of C/k as

iv0
Pic%(C/k) := %.

Example

Let
E:y’=x>+Ax+B,  ABek, 4A3+27B>#0.

be an elliptic curve over k. Then (consequence of Riemann-Roch)

E(k)=Pic®(E/k), P—[P-od].

If C is a curve that isn't an elliptic curve, what is the right object to
replace E(k) in this isomorphism?



Jacobians

Let C/k be a curve of genus g. The Jacobian J¢c of C is a g-dimensional
abelian variety defined over k. An elliptic curve E is its own Jacobian
Je=E.

Theorem

(Mordell-Weil Theorem) If k is a number field then Jc(k) is a finitely
generated abelian group.

Proof uses descent. Can often compute Jc(k) in practice, but there is no
algorithm guaranteed to work.

Theorem
Let C be a curve with C(k)# @. Then

Je(k) =Pic®(C/k).

We usually use elements of Pic®(C/k) to represent elements of Jc (k).



Example
Let
C: y?=x(x*+1)(x*+3).

The curve C has genus 2. Using descent it is possible to show that

VA

VA
57 -[(0,0) —o0] ® —

= +1(1,0)+ (~1,0) - 200].

Jc(Q)=
Note

[(0,0) —o0] +[(,0) + (=i,0) = 200] = [(V'=3,0) + (=V=3,0) — 2c0].

Definition
Let C/k be a curve of genus = 1. Let Pye C(k). Associated to Py is an

embedding
1:C—Je,  P—[P-P]

called the Abel-Jacobi map associated to Py.




Definition
Let C/k be a curve of genus = 1. Let Pye C(k). Associated to Py is an

embedding
t: C—Jec, P—[P-P

called the Abel-Jacobi map associated to Py.

Lemma

If C has genus =1, Pye C(k). Then i(C(k)) < Jc(k). If Jc(k) is finite
(and we know it) we can compute C(k).




Lemma
If C has genus =1, Pye C(k). Then i(C(k)) < Jc(k). If Jc(k) is finite
(and we know it) we can compute C(k).

Example

C: y?=x(x*+1)(x*+3).
Jc(Q) =10,{(0,0) —oo], [(#,0) + (=1,0) - 200],
[(V=3,0)+ (-v=3,0)-200]}. (1)
We can take t: C — Jc, P— [P —o0], and using this we find that

C(Q) = {oo, (0,0)}.




What if Jc(Q) is infinite?

Definition
Let C/k be a curve of genus = 1. Let Pye C(k). Associated to Py is an
embedding

L:C;’JC! P_'[P_PO]

called the Abel-Jacobi map associated to Py.




What if Jc(Q) is infinite?

Definition
Let C/k be a curve of genus = 1. Let Pye C(k). Associated to Py is an
embedding

L:C;’JCr P_>[P_P0]

called the Abel-Jacobi map associated to Py.

Suppose C is defined over Q. If Jo(Q) is infinite, can we still use it to
recover C(Q)?



What if Jc(Q) is infinite?

Definition
Let C/k be a curve of genus = 1. Let Pye C(k). Associated to Py is an
embedding

L:C;’JCr P_>[P_P0]

called the Abel-Jacobi map associated to Py.

Suppose C is defined over Q. If Jo(Q) is infinite, can we still use it to
recover C(Q)?

Find out on Wednesday!



