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Basic Philosophy
A Basic Philosophy of Arithmetic Geometry: The geometry of an
algebraic variety governs its arithmetic.

A Central Question of Arithmetic Geometry: How does the geometry
govern the arithmetic?

Think of varieties as defined by systems of polynomial equations in affine or
projective space. An affine variety V ⊂An defined over a field k is given
by a system of polynomial equations

V :


f1(x1, . . . ,xn)= 0,

...
fm(x1, . . . ,xn)= 0,

fi ∈ k[x1, . . . ,xn].

For L⊇ k , the set of L-points of V is

V (L)= {(a1, . . . ,an) ∈ Ln : fi (a1, . . . ,an)= 0 for i = 1, . . . ,m}.



A projective variety V ⊆Pn defined over k is given by a system of
polynomial equations

V :


f1(x0, . . . ,xn)= 0,

...
fm(x0, . . . ,xn)= 0,

fi ∈ k[x0, . . . ,xn] are homogeneous.

For L⊇ k , the set of L-points of V is

V (L)= {(a0, . . . ,an) ∈ Ln+1\{0} : fi (a0, . . . ,an)= 0 for i = 1, . . . ,m}/∼,

where (a0, . . . ,an)∼ (b0, . . . ,an) if there is some λ ∈ L∗ such that λai = bi for
i = 0, . . . ,n.

A variety V ⊂Pn is covered by n+1 affine patches:

V ∩ {xi = 1} i = 0,1, . . . ,n.



Dimension

We classify varieties by dimension, a non-negative integer: 0,1,2, . . ..

Fact
A variety V ⊂An or Pn, defined by a single polynomial equation V : f = 0,
where f is a non-constant polynomial, has dimension n−1.

Example

V1 ⊂A1, V1 : x3+x +1= 0 has dimension 0.

V2 ⊂A2, V2 : y2 = x6+1, has dimension 1.

V3 ⊂P2, V3 : x3+y3+z3 = 0, has dimension 1.

V4 ⊂P3, V4 : x3+y3+z3+w3 = 0, has dimension 2.

Varieties of dimension 1,2,3, . . . are called curves, surfaces, threefolds,
etc.

I♥
curves!



Smooth

Let V be an affine variety V ⊂An of dimension d , defined over a field k ,
and given by a system of polynomial equations

V :


f1(x1, . . . ,xn)= 0,

...
fm(x1, . . . ,xn)= 0,

fi ∈ k[x1, . . . ,xn].

We say that P ∈V (k) is smooth if the matrix

rank

(
∂fi
∂xj

(P)

)
i=1,...,m, j=1,...,n

= n−d .

We say that V is smooth or non-singular if it is smooth at all points
P ∈V (k).

If V ⊂Pn, we say that V is smooth if all the affine patches V ∩ {xi = 1} are
smooth.



Example
Let

C : y2 = f (x) (hyperelliptic curve)

where f is a non-constant polynomial. Then P = (a,b) ∈C is singular iff

(2a − f ′(b))= (0 0).

So
2a= 0, a2 = f (b), f ′(b)= 0.

If char(k) 6= 2, then f (b)= f ′(b)= 0. So C has a singular point if and only
if Disc(f )= 0. So C is smooth iff Disc(f ) 6= 0.



Example
Let V ⊂Pn (defined over k) be given by

V : f (x0, . . . ,xn)= 0,

where f 6= 0 is homogeneous. Then V is singular if and only if there is
P ∈V (k) such that

∂f

∂x1
(P)= ·· · = ∂f

∂xn
(P)= 0.



Curves

We will restrict to curves.

Definition
By a curve C over a field k , we mean a smooth, projective, absolutely
irreducible (or geometrically irreducible), 1-dimensional k-variety.

Rational Points: Given C/Q, we want to understand C (Q).



Example: Reducibility

Example
Consider the variety V ⊂A2 given by the equation

V : x6−1= y2+2y .

Can rewrite as
V : (y +1−x3)(y +1+x3)= 0.

So
V =V1∪V2

where
V1 : y +1−x3 = 0, V2 : y +1+x3 = 0.

Note V is reducible, but V1 and V2 are irreducible. To understand V (Q)
enough to understand V1(Q) and V2(Q).



Example: Absolute Reducibility

Example

V : 2x6−1= y2+2y .

V is irreducible, but absolutely reducible since

V
Q
= {y +1+

p
2x3 = 0}∪ {y +1−

p
2x3 = 0}.

If (x ,y) ∈V (Q) then

y +1+
p
2x3 = y +1−

p
2x3 = 0.

In other words
y =−1, x = 0.

So V (Q)= {(0,−1)}.

Moral: To understand rational points on varieties, it is enough to
understand rational on absolutely irreducible varieties.



Function Fields
Let V ⊂An be an absolutely irreducible affine variety defined over k by the
equations

V :


f1(x1, . . . ,xn)= 0,

...
fm(x1, . . . ,xn)= 0,

fi ∈ k[x1, . . . ,xn].

The affine coordinate ring of V is given by

k[V ]= k[x1, . . . ,xn]/(f1, . . . , fm).

The function field k(V ) of V is the field of fractions of k[V ].

If V ⊂Pn then its function field is the function field of any affine patch.

Example

k[An]= k[x1, . . . ,xn], k(An)= k(x1, . . . ,xn),

k(Pn)= k(Pn∩ {x0 = 1})= k(x1, . . . ,xn).
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f (x)).



Function Fields
Let V ⊂An be an absolutely irreducible affine variety defined over k by the
equations

V :


f1(x1, . . . ,xn)= 0,

...
fm(x1, . . . ,xn)= 0,

fi ∈ k[x1, . . . ,xn].

The affine coordinate ring of V is given by

k[V ]= k[x1, . . . ,xn]/(f1, . . . , fm).

The function field k(V ) of V is the field of fractions of k[V ].

If V ⊂Pn then its function field is the function field of any affine patch.

Example (Why do we want irreducibility?)

V ⊂A2, V : x1x2 = 0, k[V ]= k[x1,x2]/(x1x2).

x1, x2 are zero divisors in k[V ] so it isn’t an integral domain.



Genus
We classify curves by genus. This is a non-negative integer: 0,1,2, . . . .

Example
If

C/k : F (x ,y ,z)= 0, C ⊂P2

is smooth, where F ∈ k[x ,y ,z ] is homogeneous of degree n, then C has
genus (n−1)(n−2)/2.

Example
Let

C/k : y2 = f (x), C ⊂A2 (f ∈ k[x ] non-constant).

If C is smooth and deg(f )= n then

genus(C )=
{
(d −1)/2 d odd
(d −2)/2 d even.



Curves of Genus 0

Theorem

Let C be a curve of genus 0 defined over k . Then C is isomorphic (over k)
to a smooth plane curve of degree 2 (i.e. a conic). Moreover, if C (k) 6= ;
then C is isomorphic over k to P1.

Theorem
(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

1 C (Q) 6= ;;
2 C (R) 6= ; and C (Qp) 6= ; for all primes p.



Theorem
(The Hasse Principle) Let C/Q be a curve of genus 0. The following are
equivalent:

1 C (Q) 6= ;;
2 C (R) 6= ; and C (Qp) 6= ; for all primes p.

Theorem (Legendre, Hasse)
Let

C : ax2+by2+cz2 = 0, a, b, c non-zero, squarefree integers.

The following are equivalent:
1 C (Q) 6= ;;
2 C (R) 6= ; and C (Qp) 6= ; for all primes p.
3 C (R) 6= ; and C (Qp) 6= ; for all primes p | 2abc .



Genus 1

Theorem
If C is a curve of genus 1 over a field k and P0 ∈C (k), then C is
isomorphic over k to a Weierstrass elliptic curve

y2z +a1xyz +a3yz
2 = x3+a2x

2z +a4xz
2+a6z

3 ⊂P2,

where the isomorphism sends P0 to (0 : 1 : 0).
(Mordell–Weil) Moreover, if k =Q or a number field, then C (k) is a finitely
generated abelian group with P0 as the zero element.

1 There is no known algorithm for deciding if C (Q) 6= ;.
2 There is no known algorithm for computing a Mordell–Weil basis for

C (Q) if it is non-empty.

But there is a descent strategy that usually works (Steffen’s lectures).



Genus ≥ 2

Theorem (Faltings)
Let C be a curve of genus ≥ 2 over a number field k . Then C (k) is finite.

1 There is no known algorithm for computing C (k).
2 There is no known algorithm for deciding if C (k) 6= ;.

But there is a bag of tricks that can be used to show that C (k) is empty,
or determine C (k) if it is non-empty. These include:

1 Local Methods (Michael’s Lectures).
2 Quotients (Michael’s Lectures).
3 Descent (Michael’s Lectures).
4 Chabauty.
5 Mordell–Weil sieve.

The purpose of these lectures is to get a feel for each of these methods and
see it applied in some example.



Divisors

Let C be a curve over k . A divisor D on C is a formal linear combination

D =
n∑

i=1
aiPi , ai ∈Z, Pi ∈C (k).

We define the degree of D to be
∑
ai .

Example
Let

C : y2 = x(x2+1)(x3+1).

Let

D1 = 2 · (0,0)+ (1,2), D2 = (i ,0)− (−i ,0), D3 = (i ,0)+ (−i ,0)−2 · (1,2).

Then
deg(D1)= 3, deg(D2)= 0, deg(D3)= 0.



We say that D is rational if it is invariant under Gal(k/k).

Example
Let

C/Q : y2 = x(x2+1)(x3+1).

Let

D1 = 2 · (0,0)+ (1,2), D2 = (i ,0)− (−i ,0), D3 = (i ,0)+ (−i ,0)−2 · (1,2).

Then D1 is rational, D3 is rational, D2 is not rational.

Definition
Let

Div0(C/k) := {
rational degree 0 divisors

}
.

This is an abelian group.

In the example D3 ∈Div0(C/k), but D1, D2 ∉Div0(C/k).



Principal Divisors

Let k(C ) be the function field of C , and let f ∈ k(C ). If P ∈C (k) then
there is υP(f ) ∈Z which measures the order of vanishing of f at P .
Define

div(f )= ∑
P∈C(k)

υP(f ) ·P .

Then div(f ) ∈Div0(C/k).

Example

Let f = x2−7
x3 on P1. Then

div(f )=−3 · (0)+ (
p
7)+ (−

p
7)

+∞.
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Picard Group

Define

Princ(C/k) := {div(f ) : f ∈ k(C )∗} principal divisors.

This is an abelian group (note div(fg)= div(f )+div(g)). Also
Princ(C/k)⊂Div0(C/k). We define the Picard group of C/k as

Pic0(C/k) := Div0(C/k)

Princ(C/k)
.

Example

Pic0(P1/k)= 0.



Define
Princ(C/k) := {div(f ) : f ∈ k(C )}.

This is an abelian group (note div(fg)= div(f )+div(g)). Also
Princ(C/k)⊂Div0(C/k). We define the Picard group of C/k as

Pic0(C/k) := Div0(C/k)

Princ(C/k)
.

Example
Let

E : y2 = x3+Ax +B , A,B ∈ k , 4A3+27B2 6= 0.

be an elliptic curve over k . Then (consequence of Riemann-Roch)

E (k)∼=Pic0(E/k), P 7→ [P −∞].

If C is a curve that isn’t an elliptic curve, what is the right object to
replace E (k) in this isomorphism?



Jacobians

Let C/k be a curve of genus g . The Jacobian JC of C is a g -dimensional
abelian variety defined over k . An elliptic curve E is its own Jacobian
JE =E .

Theorem
(Mordell–Weil Theorem) If k is a number field then JC (k) is a finitely
generated abelian group.

Proof uses descent. Can often compute JC (k) in practice, but there is no
algorithm guaranteed to work.

Theorem
Let C be a curve with C (k) 6= ;. Then

JC (k)∼=Pic0(C/k).

We usually use elements of Pic0(C/k) to represent elements of JC (k).



Example
Let

C : y2 = x(x2+1)(x2+3).

The curve C has genus 2. Using descent it is possible to show that

JC (Q)=
Z

2Z
· [(0,0)−∞]⊕ Z

2Z
· [(i ,0)+ (−i ,0)−2∞].

Note

[(0,0)−∞]+ [(i ,0)+ (−i ,0)−2∞]= [(
p
−3,0)+ (−

p
−3,0)−2∞].

Definition
Let C/k be a curve of genus ≥ 1. Let P0 ∈C (k). Associated to P0 is an
embedding

ι : C ,→ JC , P → [P −P0]

called the Abel–Jacobi map associated to P0.



Definition
Let C/k be a curve of genus ≥ 1. Let P0 ∈C (k). Associated to P0 is an
embedding

ι : C ,→ JC , P → [P −P0]

called the Abel–Jacobi map associated to P0.

Lemma
If C has genus ≥ 1, P0 ∈C (k). Then ι(C (k))⊆ JC (k). If JC (k) is finite
(and we know it) we can compute C (k).



Lemma
If C has genus ≥ 1, P0 ∈C (k). Then ι(C (k))⊆ JC (k). If JC (k) is finite
(and we know it) we can compute C (k).

Example

C : y2 = x(x2+1)(x2+3).

JC (Q)=
{
0, [(0,0)−∞], [(i ,0)+ (−i ,0)−2∞],

[(
p
−3,0)+ (−

p
−3,0)−2∞]

}
. (1)

We can take ι :C ,→ JC , P 7→ [P −∞], and using this we find that

C (Q)= {∞,(0,0)}.



What if JC (Q) is infinite?

Definition
Let C/k be a curve of genus ≥ 1. Let P0 ∈C (k). Associated to P0 is an
embedding

ι : C ,→ JC , P → [P −P0]

called the Abel–Jacobi map associated to P0.

Suppose C is defined over Q. If JC (Q) is infinite, can we still use it to
recover C (Q)?

Find out on Wednesday!
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