1. The weighted average method

Consider the heat equation $\partial_{t} u=\frac{\sigma^{2}}{2} \partial_{x}^{2} u$ on $[0,1]$ with zero boundary conditions and initial condition $u_{0}(x)$. In the lecture we have seen the forward scheme (with $\mu=\frac{\sigma^{2}}{2} \frac{h}{h_{x}^{2}}$),

$$
u_{j}^{n+1}-u_{j}^{n}=\mu\left(u_{j-1}^{n}+u_{j+1}^{n}-2 u_{j}^{n}\right),
$$

and the backward scheme

$$
u_{j}^{n+1}-u_{j}^{n}=\mu\left(u_{j-1}^{n+1}+u_{j+1}^{n+1}-2 u_{j}^{n+1}\right) .
$$

A natural next step is to mix the two schemes: for $0 \leqslant \theta \leqslant 1$ we put

$$
u_{j}^{n+1}-u_{j}^{n}=\mu\left(\theta\left(u_{j-1}^{n}+u_{j+1}^{n}-2 u_{j}^{n}\right)+(1-\theta)\left(u_{j-1}^{n+1}+u_{j+1}^{n+1}-2 u_{j}^{n+1}\right)\right)
$$

is the weighted average scheme.
(a) Write the mixed scheme in the form

$$
B_{1} \boldsymbol{u}^{n+1}=B_{2} \boldsymbol{u}^{n},
$$

with matrices B_{1} and B_{2}. You should write B_{1} and B_{2} as a sum of the identity matrix and a multiple of the discrete Laplacian A from the lecture.
(b) Using the knowledge of the eigenvalues and eigenvectors of the discrete Laplacian, investigate for which θ the weighted average scheme is unconditionally stable, i.e. for which θ the matrix $B_{1}^{-1} B_{2}$ has no eigenvalues of absolute value greater than 1 , for any value of μ. What does this imply for the approximations \boldsymbol{u}^{n} to the true solution under the scheme?
(c) Investigate the order of consistency for the weighted average scheme. For this, compute the truncation error

$$
\begin{aligned}
& T\left(x_{j}, t_{n+1 / 2}\right)=\frac{1}{h}\left(u\left(x_{j}, t_{n+1}\right)-u\left(x_{j}, t_{n}\right)\right) \\
& -\frac{\sigma^{2}}{2 h_{x}^{2}}\left(\theta\left(u\left(x_{j-1}, t_{n}\right)+u\left(x_{j+1}, t_{n}\right)-2 u\left(x_{j}, t_{n}\right)\right)+(1-\theta)\left(u\left(x_{j-1}, t_{n+1}\right)+u\left(x_{j+1}, t_{n+1}\right)-2 u\left(x_{j}, t_{n+1}\right)\right)\right) .
\end{aligned}
$$

Here $u(x, t)$ is the true solution of the PDE. You should calculate $T\left(x_{j}, t_{n+1 / 2}\right)$ by Taylor expanding $u(x, t)$ around $\left(x_{j}, t_{n+1 / 2}\right)$, and using the approximate values of the expansion for the $u\left(x_{j}, t_{n}\right)$, $u\left(x_{j}, t_{n+1}\right)$ etc. appearing in the truncation error. Use the PDE to cancel some terms.
(d) Show that for $\theta=\frac{1}{2}$ the scheme is second order consistent (you should have seem this as a result of the above question). This particular scheme is the famous Crank-Nicholson scheme.
2. Irregularly spaced discretisation points: Consider again the heat equation $\partial_{t} u=\partial_{x}^{2} u$ on the interval $[0,1]$. Instead of disctretising x by regularly spaced points $\left\{\left(j h_{x}\right): 0 \leqslant j \leqslant J\right\}$, we can also use arbitrary points

$$
0=x_{0}<x_{1}<x_{2}<\ldots<x_{J}=1 .
$$

The heat equation on the interval is then approximated by the forward scheme

$$
\frac{1}{h}\left(u_{j}^{n+1}-u_{j}^{n}\right)=\frac{2}{\delta x_{j-1}+\delta x_{j}}\left(\frac{1}{\delta x_{j}}\left(u_{j+1}^{n}-u_{j}^{n}\right)-\frac{1}{\delta x_{j-1}}\left(u_{j}^{n}-u_{j-1}^{n}\right)\right),
$$

where $\delta x_{k}=x_{k+1}-x_{k}$. Show that the truncation error is given by

$$
T_{j}^{n}=\frac{h}{2} \partial_{t}^{2} u\left(x_{j}, t_{n}\right)-\frac{1}{3}\left(\delta x_{j}-\delta x_{j-1}\right) \partial_{x}^{3} u\left(x_{j}, t_{n}\right)-\frac{1}{12}\left(\left(\delta x_{j}\right)^{2}+\left(\delta x_{j-1}\right)^{2}-\delta x_{j} \delta x_{j-1}\right) \partial_{x}^{4}\left(x_{j}, t_{n}\right)+\ldots,
$$

where '...' means terms that get smaller faster when the δx_{k} and h go to zero. When does the term with the $1 / 3$ prefactor vanish?

