1. Let u solve the heat equation

$$
\partial_{t} u=\partial_{x}^{2} u \quad \text { for } 0<x<1 \text { and } t>0, \quad u(0, t)=u(1, t)=0, u(x, 0)=1
$$

(a) Interpret u as the value of a suitable double barrier option.
(b) Express $u(x, t)$ as a Fourier series.
(c) How many terms of the Fourier series are needed at $t=1 / 100$ to get one percent accuracy of the solution?

2. Deriving the fundamental solution.

(a) Show that if u solves the heat equation, then $u\left(c x, c^{2} t\right)$ also solves it, for any $c>0$.
(b) Now take the simplest type of functions that have the scaling property given in a): assume $u(x, t)=$ $U\left(|x|^{2} / t\right)$ for some function $U: \mathbb{R} \rightarrow \mathbb{R}^{m}, x \in R^{n}$ and $t>0$. Show that $\partial_{t} u=\Delta u$ if and only if

$$
4 z U^{\prime \prime}(z)+(2 n+z) U^{\prime}(z)=0 \quad \text { for } z>0
$$

(c) Show that the general solution for $U(z)$ is given by

$$
U(z)=a \int_{0}^{z} e^{-s / 4} s^{-n / 2} d s+b
$$

for any constants a, b.
(d) Show, in dimension $n=1$, that

$$
u(x, t)=\partial_{x} U\left(x^{2} / t\right)=(2 x / t) U^{\prime}\left(x^{2} / t\right)
$$

is also a solution of the heat equation and show for suitable choice of a that this leads to the fundamental solution $\Phi(x, t)=(4 \pi t)^{-1 / 2} \exp \left(-x^{2} / 4 t\right)$.
3. Growth estimates via energy methods Let u solve the heat equation on a bounded domain $D \subset \mathbb{R}^{n}$ with smooth boundary:
$\partial_{t} u=\Delta u$ for $x \in D, t>0, \quad u(x, 0)=g(x)$ for $x \in D, \quad u(x, t)=h(x, t)$ for $x \in \partial D, t>0$.
(a) Define $E(t)=\int_{D}(u(x, t))^{2} \mathrm{~d} x$. Show that if $h=0$ above, then $\partial_{t} E(t) \leqslant 0$. Hint: You will need the integration by parts formula

$$
\int_{D} u \Delta u \mathrm{~d} x=-\int_{D}|\nabla u|^{2} \mathrm{~d} x+\int_{\partial D} u(x) \nabla u \cdot \boldsymbol{n}(x) \mathrm{d} S(x),
$$

where \boldsymbol{n} is the outer normal vector to ∂D.
(b) Use this to give a short proof of uniqueness for the solution to the heat equation.
(c) Now consider the equation

$$
\begin{array}{ll}
\partial_{t} u=\Delta u+\lambda u & x \in D, t>0 \\
u(x, 0)=f(x) & x \in D \\
u(x, t)=0 & x \in \partial D, t>0
\end{array}
$$

with $\lambda>0$. Use this to derive a growth estimate for $E(t)$; you can use the Gronwall Lemma that says that if $f^{\prime}(x) \leqslant \alpha f(x)$, then $f(x) \leqslant f(0) \mathrm{e}^{\alpha x}$ (can you prove that?).
(d) Now specialize the situation of c) to $D=[0,1]$ and $f(x)=\sin (\pi x)$. Find the exact solution (e.g. by Fourier series), and compare the exact behaviour of $E(t)$ with the one that comes from the bound you found in c). How different are they?

