1. Fundamental solution of the Laplace equation

Check that the function $F: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}$ with

$$
F(x)= \begin{cases}-\frac{1}{2 \pi} \ln |x| & \text { if } n=2, \\ \frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|^{n-2}} & \text { if } n \geqslant 3\end{cases}
$$

solves the Laplace equation $\Delta F=0$ on its domain of definition.

2. Running payoff without time constraints

Assume that a group of assets, modelled at time s by $\boldsymbol{y}_{s} \in \mathbb{R}^{n}$, solves the stochastic differential equation

$$
\mathrm{d} y_{s}^{(i)}=f_{i}\left(\boldsymbol{y}_{s}, s\right) \mathrm{d} s+\sum_{i, j=1}^{n} g_{i j}\left(\boldsymbol{y}_{s}, s\right) \mathrm{d} \mathcal{W}_{s}^{(j)}
$$

Let $D \subset \mathbb{R}^{n}$ be a bounded open set. Assume that we get an (infinitesimal) payout of $\Psi(\boldsymbol{x}, t) \mathrm{d} t$ for each moment that the asset vales are \boldsymbol{x}, and a final payout $\Phi(\boldsymbol{x})$ at the moment that the asset value process hits the boundary ∂D. Derive a PDE for the expected payout given that we start at \boldsymbol{x}, i.e. for

$$
u(\boldsymbol{x})=\mathbb{E}_{\boldsymbol{y}_{0}=\boldsymbol{x}}\left(\int_{0}^{\tau(\boldsymbol{x})} \Psi\left(\boldsymbol{y}_{s}\right) \mathrm{d} s+\Phi\left(\boldsymbol{y}_{\tau(x)}\right)\right)
$$

Here $\tau(\boldsymbol{x})$ is the first time that \boldsymbol{y}_{s} leaves D.

3. A scaling relation

Sometimes it is possible to tell some properties of the solution of a PDE, even though one cannot obtain it explicitly. As an example, show that any solution $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of the PDE

$$
x \cdot \nabla u(x)=\alpha u(x)
$$

(with $\alpha>0$) satisfies, for all $\lambda>0$,

$$
u(\lambda x)=\lambda^{\alpha} u(x)
$$

Hint: differentiate with respect to λ.
4. (a) Solve the following initial value problem

$$
\text { (I1) }\left\{\begin{aligned}
\partial_{x} u+\partial_{y} u & =u \\
u(x, 0) & =f(x), \quad f \in C^{1}(\mathbb{R}), u \in C^{1}\left(\mathbb{R}^{2}\right) .
\end{aligned}\right.
$$

(b) Show that, and explain why, the problem

$$
\text { (I2) } \quad\left\{\begin{aligned}
\partial_{x} u+\partial_{y} u & =u \\
u(x, x) & =1
\end{aligned}\right.
$$

has no solutions.
Hint: The solution obtained in part (a) can be useful.
(c) Show that, and explain why, the problem

$$
\text { (I3) }\left\{\begin{aligned}
\partial_{x} u+\partial_{y} u & =u \\
u(x, x) & =0
\end{aligned}\right.
$$

has infinitely many solution.

