MA908L
 Partial Differential Equations in Finance

Exercise Sheet 0: Test your skills!

1. Differentiation

(a) Differentiate the following functions:

$$
f(x)=\mathrm{e}^{-x^{2}}, \quad f(x)=a^{x}, \quad f(x)=x^{\left(x^{2}\right)}, \quad f(x)=\frac{1}{1+x^{2}}
$$

(b) Multidimensional chain rule: Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Write down the multidimensional chain rule for $\frac{d}{d t} F(f(t), g(t))$. Now apply this to compute the derivative to $h(t)=\int_{0}^{t} \mathrm{e}^{-s t} \cos (s) \mathrm{d} s$, and more generally to

$$
h(t)=\int_{0}^{t} \phi(s, t) \mathrm{d} s, \quad h(t)=\int_{0}^{t} \mathrm{~d} s \int_{0}^{t} \mathrm{~d} s^{\prime} \phi\left(s-s^{\prime}\right)
$$

(c) The gradient: For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ the gradient is defined as

$$
\nabla f(\boldsymbol{x})=\left(\partial_{x_{1}} f(\boldsymbol{x}), \ldots, \partial_{x_{n}} f(\boldsymbol{x})\right) \in \mathbb{R}^{n}
$$

(Here, $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$.) Let $\ell_{a}=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: f(\boldsymbol{x})=a\right\}$ be the level line of level a to f. Prove that $\nabla f(\boldsymbol{x})$ is perpendicular to a curve $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ if and only if γ is a level line.
(d) The Laplace operator: For a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the Laplace operator is defined through

$$
\Delta f(\boldsymbol{x})=\sum_{i=1}^{n} \partial_{x_{i}}^{2} f(\boldsymbol{x})
$$

Calculate the result of applying the Laplace operator to

$$
(x, y) \mapsto f(x, y)=\mathrm{e}^{-\frac{x^{2}+y^{2}}{2 t}}
$$

where $t>0$ is a parameter. Try to find a function $h(t)$ such that

$$
\partial_{t} h(t) \mathrm{e}^{-\left(x^{2}+y^{2}\right) / 2 t}=\frac{1}{2} \Delta_{(x, y)} h(t) \mathrm{e}^{-\left(x^{2}+y^{2}\right) / 2 t}
$$

(e) Harmonic functions: A function $f: D \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\Delta f(\boldsymbol{x})=0$ for all $\boldsymbol{x} \in D$ is called harmonic in D. Can you find easy nonzero harmonic functions in all dimensions? Now show that in three dimensions, the function $f(x)=\frac{1}{|x|}$ is harmonic for all $x \neq 0$. Here

$$
|x|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

is the Euclidean norm in \mathbb{R}^{n}. Confirm that $1 /|x|$ is not harmonic in dimensions different from three.

2. Itô calculus:

Recall Itô's formula: Assume that a stochastic process $\boldsymbol{y}_{t}=\left(y_{t}^{(1)}, \ldots, y_{t}^{(n)}\right)$ satisfies the stochastic differential equation

$$
\mathrm{d} y_{t}^{(i)}=F_{i}\left(\boldsymbol{y}_{t}, t\right) \mathrm{d} t+G_{i}\left(\boldsymbol{y}_{t}, t\right) \mathrm{d} \mathcal{W}_{t}^{(i)}
$$

where $F_{i}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ and $G_{i}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ are smooth enough functions, and $\mathcal{W}_{t}^{(i)}$ are independent Brownian motions. Then for a smooth function $h: \mathbb{R}^{n} \times \mathbb{R}$, the stochastic process $h_{t}=h\left(\boldsymbol{y}_{t}, t\right)$ solves the stochastic differential equation

$$
\mathrm{d} h_{t}=\partial_{t} h\left(\boldsymbol{y}_{t}, t\right) \mathrm{d} t+\sum_{j=1}^{n} \partial_{x_{j}} h\left(\boldsymbol{y}_{t}, t\right) \mathrm{d} y_{t}^{(j)}+\frac{1}{2} \sum_{j, k=1}^{n}\left(\partial_{x_{j}} \partial_{x_{k}} h\left(\boldsymbol{y}_{t}, t\right)\right) \mathrm{d} \boldsymbol{y}_{t}^{(j)} \mathrm{d} \boldsymbol{y}_{t}^{(k)}
$$

In the last term above, recall that $\left(\mathrm{d} \mathcal{W}^{(j)}\right)^{2}=\mathrm{d} t$ while all other mixed terms are zero.
(a) Apply the Itô-formula to

$$
d y_{t}=F\left(y_{t}\right) \mathrm{d} t+G\left(y_{t}\right) \mathrm{d} \mathcal{W}_{t}
$$

and $h\left(y_{t}\right)=\mathrm{e}^{y_{t}}$. How do we have to choose F and G to obtain geometric Brownian motion

$$
\mathrm{d} h_{t}=\mu h_{t} \mathrm{~d} t+\sigma h_{t} \mathrm{~d} \mathcal{W}_{t}
$$

with constant drift μ and constant variance σ ?
(b) Now apply Itôs formula to

$$
y_{t}^{(i)}=\sigma \mathcal{W}_{t}^{(i)},
$$

and general twice differentiable $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$. Can you give a condition so that the usual chain rule $\mathrm{d} h\left(\boldsymbol{y}_{t}\right)=\sum_{j=1}^{n} \partial_{x_{j}} h\left(\boldsymbol{y}_{t}\right) \mathrm{d} y_{t}^{(j)}$ holds in this case?
(c) Consider again geometric Brownian motion

$$
\mathrm{d} y_{t}=\mu y_{t} \mathrm{~d} t+\sigma y_{t} \mathrm{~d} \mathcal{W}_{t} .
$$

Can you identify the stochastic process $h_{t}=1 / y_{t}$?

