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4.3. Numerics for the heat equation. We now study numerical solutions for
the heat equation in more detail. Although we can solve the heat equation analyti-
cally in many cases, it is useful to study its numerical solutions, because for such a
simple equation we have hope of understanding the numerical scheme really well.
The equation we will always consider is the heat equation on the interval [0, 1]:

∂tu(x, t) =
1

2
σ
2
∂
2

xu(x, t) (t > 0, 0 < x < 1),

u(x, 0) = u0(x), u(0, t) = u(1, t) = 0.

The forward scheme for this equation is (with tn = hn and xj = hxj):
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J = 0, where J is such that hxJ = 1. The ratio
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The first question is whether the scheme (4.7) is consistent. This is easily seen to
be true. Recall the definition of the truncation error. First we bring everything in
(4.7) to one side, and divide by h. This gives
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The truncation error is the results of replacing the un
j above with the true solution.

Thus,

T (xj , tn) :=
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(u(xj+1, tn)+u(xj−1, tn)−2u(xj , tn)).

We can now Taylor expand this expression around u(xj , tn) and find that
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where the terms . . . come with higher powers of h and hx. ∂tu−
σ2

2
∂
2
xu = 0 since

u is a true solution of the heat equation, and we see that limh,hx→0 T (xj , tn) = 0.
So the scheme is consistent.
How about convergence? There is little hope of convergence unless µ = 1
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stays at least bounded as h and hx go to zero. But even this is not enough. As one
can see by experimenting with any computer implementation of the scheme, strong
oscillations will build up and the numerical solution will diverge unless µ � 1/2.
The numerical solutions for µ > 1/2 will have nothing to do with the analytical
solutions, and making the step size smaller will not help here.
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To see why this is so, let us take another look at our scheme (4.7). Let us define
the vector un = (un

1 , . . . , u
n
J−1

). Then (4.7) reads

(4.8) un+1 = (1+ µA)un
, with A =





−2 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 1 −2 1 0
0 · · · 0 0 1 −2 1
0 · · · 0 0 0 1 −2





A is a (J − 1)× (J − 1) matrix, and is called the discrete Laplacian. 1 denotes the
unit matrix that has 1 on the diagonal and 0 elsewhere. From iterating (4.8) we
conclude

un = (1+ µA)nu0
.

So we need to compute high powers of the matrix (1+ µA). For this, we need the
eigenvalues and eigenvectors of A. Let us start by assuming that we have found
them, i.e. let v1, . . . ,vJ−1 be the eigenvectors and λ1, . . . ,λJ−1 be the eigenvalues.
We write the initial condition using the basis of eigenvectors as

u0 =
J−1�

k=1

αkvk.

We then find

(4.9) un =
J−1�

k=1

αk(1 + µλk)
nvk.

Now we can already see under which circumstances the numerical solution will
explode. Namely, we must assume that none of the αk is zero - otherwise we would
restrict ourselves to very special initial conditions that are orthogonal to some
eigenvector of A. Thus, the expression (4.9) will stay bounded for large n if and
only if

(4.10) |1 + µλk| < 1 for all k.

In other words, for a sensible numerical scheme we need that the matrix 1 + µA

has no eigenvalues of absolute value greater than one.
Let us now see what the eigenvalues of A actually are. While there are systematic
ways to derive them, we will here just ’guess’ them. Putting (vk)j = sin(kπj/J),
some arithmetic (in particular using sin(x± y) = sinx cos y ± cosx sin y) gives

(Avk)j = sin(kπ(j + 1)/J) + sin(kπ(j + 1)/J)− 2 sin(kπj/J) = λkvk

with λk = −2(1 − cos(kπ/J)). This works for k = 1, . . . J − 1. For k = J , the
eigenvector would be the zero vector, which is not allowed, and for larger k, we
get back the (negatives of) vectors that we already had. Anyway, we have found
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the J − 1 eigenvalues and eigenvectors of the the (J − 1)× (J − 1)-matrix A. Now
we plug this into (4.10), and get the condition

|1− 2µ(1− cos(kπ/J))| < 1.

The term in brackets is always bigger than zero, and can be up to just below
2, which happens for k = J − 1. So in order for the absolute value above to be
always smaller than one, we will need µ � 1/2. Otherwise, the contribution of the
eigenvalue k = J − 1 will dominate all others, which leads to the zig-zag line that
we see in the numerical simulations.
The restriction µ � 1/2 is a big deal. For σ

2
/2 = 1, it means that h < h

2
x/2.

So if we want to discretize space into an not unreasonable grid of points that are
1/100 apart, we are forced to move in tiny time steps of 1/20000. What can we
do about this? The answer is to use the implicit scheme. To derive it, we do the
Taylor expansion around tn+1 and xj , and find

∂tu(xj , tn+1) ≈
1

h
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∂
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u(xj+1, tn+1) + u(xj−1, tn+1)− 2u(xj , tn+1)
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.

This leads to the scheme

u
n
j = u

n+1
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h

h2
x

(un+1
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− 2un+1
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Why is this scheme better than the one we had before? Let us write the scheme
in vector notation:

un = un+1
− µAun+1 = (1− µA)un+1

,

where µ is the same as before. Therefore,

un+1 = (1− µA)−1un
.

We can easily find the eigenvalues of (1− µA)−1. Recall that the eigenvalues of A
are −2(1 − cos(kπ/J)) with 1 � k � J − 1. Thus, the eigenvalues of 1 − µA are
1+2µ(1−cos(kπ/J)), with the same eigenvectors as A has. Finally, the eigenvalues
of (1 − µA)−1 are given by 1

1+2µ(1−cos(kπ/J)) , with the same eigenvectors that A

has (you should check this!). These eigenvalues are smaller than 1 for any µ. So, in
this case the scheme is sensible for all µ, and we can e.g. take µ = 1000 if we want
to do a fine space discretisation. This will then still lead to a reasonably large time
step.
Let us look at a consequence of the fact that the matrix (1 − µA)−1 has only
eigenvalues of absolute value smaller than 1. Consider two initial conditions for
the PDE that are very similar (you can think of one as the true initial condition,
and the other one as some approximation to the true initial condition). Let us thus
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assume that we have u0 and w0 with �u0−w0� < ε. When we write both u0 and
w0 in terms of the eigenvectors vk, this means that

ε
2
> �u0

−w0
�
2 = �

J−1�

k=1

αkvk −

J−1�

k=1

βkvk�
2 =

J−1�

k=1

(αk − βk)
2
.

The last equality follows from the fact that the vk are orthogonal and normalized.
If un and wn are the solutions obtained with the implicit numerical scheme, then
we find

�un
−wn

�
2 = �

J−1�
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(αk − βk)λ
n
kvk�

2 =
J−1�

k=1
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2
|λk|

2n
< ε

2
,

where in the last step we have used that all the λk are in norm smaller than 1.
We conclude that small errors in the initial conditions do not become larger as
we take many steps of the scheme; small difference of initial conditions leads to
small difference in the solutions at any time in the future. This property is called
stability of the scheme. We will see it again in the next subsection below.

4.4. The Lax Equivalence Theorem. We have seen for the heat equation that
although the forward difference scheme is consistent, it is not necessarily conver-
gent. This is different for the backwards scheme, which is both consistent and
convergent no matter what parameter µ we used. We now generalize this to arbi-
trary linear PDE and state and prove one of the fundamental theorems of numerics
of PDE, the Lax Equivalence Theorem. We consider a domain D ⊂ Rd, and the
linear PDE

(4.11)






∂tu(x, t) = Lu(x, t), (x ∈ Rd
, t ∈ (0, T ]),

u(x, 0) = u0(x) (initial condition),
u(x, t) = ub(x) for x ∈ ∂D, (boundary condition).

Above L is a differential operator, such as the F that we have seen in (4.5).
However, we also demand that L is linear, i.e. that only the partial derivatives
∂
n
xu appear in L (possibly with prefactors that depend on x), but no squares (or

higher powers, or any nonlinear functions) of them appear, and the same u itself.
This is e.g. not the case with the HJB equation. Furthermore, we demand that L
does not explicitly depend on t.
We have little hope of finding a well-behaved numerical scheme if the equation
itself is not well-behaved. What exactly constitutes a well-behaved equation is the
content of the following definition.

Definition: The PDE (4.11) is well-posed if
(i): for all bounded initial conditions u0 a solution exists.
(ii): There exists a constant C > 0 such that for any two bounded initial conditions
u0 and ũ0, we have

|u(x, t)− ũ(x, t)| � C|u0(x)− ũ0(x)|,
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for all x ∈ D, and all t ∈ [0, T ]. Here ũ is the solution of the PDE with initial
condition ũ0.
The condition (ii) is called continuous dependence on the data. It is very important
for predicting solutions in situations where the initial data may be only approx-
imately known (i.e. almost all situations arising in practice). However, there are
many PDE that do not have this property, and lead to so-called chaotic behaviour.
Let us now consider a numerical scheme for (4.11). We will not treat the most
general case, see the book by Morton and Mayers, Chapter 5, for more generality.
Our procedure is:
1) Discretize the time in steps of size h. Put tn = hn.
2) Discretize the space with a grid of points that are hx apart, i.e. |xj − xl| = hx

for two neighbouring grid points. On the boundary, we may have to introduce
additional points and may then have |xj − xl| < hx if one of the two points is on
the boundary.
3) Write u

n
j for the approximate solution, i.e. u

n
j is supposed to approximate

u(xj , tn).

We only study schemes of the form

(4.12) u
n+1

j = u
n
j +

M�

i=1

Biju
n
i + Fj ,

where B = (Bij)1 � i,j � M is a M ×M matrix that approximates L, Fj may come
from an inhomogeniety or from boundary conditions, and M is the number of all
spatial grid points. In vector notation, we have

(4.13) un+1 = un +Bun + F .

Note that both the explicit and the implicit finite difference schemes for the heat
equation are of this form. In the latter, B already involves the inverse of the
discrete Laplacian.
To be precise, we need another notion.
Definition: A refinement path is a map h �→ hx(h) such that limh→0 hx(h) = 0.
In words, it is a way of making both time steps and spatial grid points get closer
and closer together in some sort of coupled way.
We will henceforth assume that some refinement path is given and not talk about
it much more. For example, a refinement path is implicitly present in the following
definition.
Definition: The scheme (4.13) is consistent if for all n ∈ N with hn � T , and all
j � M we have

(4.14) T
n
j =

1

h

�
u(xj , tn+1)− u(xj , tn)−

M�

i=1

Biju(xi, tn) + Fj

�
→ 0

as h → 0, uniformly in j and n such that the points xj and tn lie in the space-time
domain.
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Note that the matrix B will contain hx in some way, and h and hx are coupled
through a refinement path. The idea of the above definition is again that 1

h (u
n+1 =

un) ≈ ∂tu, and that 1

h (Bun − F ) ≈ Lu, and so the equations converge to each
other. T is called the truncation error.
As we have seen, consistency alone is not enough for convergence. We need stability,
which is the numerical equivalent for well-posedness.
Definition: The scheme (4.13) is stable if there exists K > 0 such that for all
h > 0, all n ∈ N with hn � T , and all bounded numerical initial conditions
u0

,w0, we have

|u
n
j − w

n
j | � K|u

0

j − w
0

j |,

for all j � M . (Note that the number of spatial grid points M will grow when h

gets smaller - this is where the refinement path is hidden in this definition). Of
course, there un is the numerical solution with initial condition u0, and wn is the
numerical solution with initial condition w0.
Let us now define what it means for a numerical scheme to be convergent:
Definition: The scheme (4.13) is convergent if for all x, t in the space-time domain,
and all xj , tn such that xt → x and tn → t as h → 0, we have |u(xj , tn)− u

n
j | → 0

as h → 0. Here u
n
j is the solution of the numerical scheme, and u(xj , tn) is the

true solution evaluated at xj and tn.
The main result now is:
Therorem (Lax Equivalence Theorem): Assume that (4.11) is linear and well-
posed. Assume that (4.13) is consistent. Then (4.13) is convergent if and only if it
is stable.

Proof. We only prove the direction that stability implies convergence. This direc-
tion is more important in practice, and the proof of the other direction requires
tools from functional analysis that we do not have. We calculate

|u
n+1

j − u(xj , tn+1)|

= |u
n
j +

M�

i=1

Biju
n
i + Fj − u(xj , tn)−

M�

i=1

Biju(xi, tn)− Fj − hT
n
j |.

In matrix notation this means

�un+1
− un+1

true� = �(1 +B)(un
− un

true)− hT n
� = (∗).

Here, we defined un
true = (u(x1, tn), . . . u(xM , tn)). We further have

(∗) = (1 +B)2(un−1
− un−1

true )− h(1 +B)T n
− hT n−1 = . . . =

= (1 +B)n(u0
− u0

true) + h

n�

k=1

(1 +B)n−kT k = (∗∗).

Now by stability, �(1−B)n−k� � K for all n−k (otherwise we could find a vector
such that �(1 − B)n−ku0� � K�u0�. But this would mean that the difference
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between the numerical solution with zero initial condition and the one with initial
condition u0 is greater than K�u0�, which contradicts stability.) So,

(∗∗) � hK

n�

k=1

T n � hn sup
k

�T k
�.

Now hn � T , and the supk �T
k
� → 0 as h → 0 by consistency. Thus we have

shown convergence. �


