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4. Numerical solutions of PDE

There are very few PDE that can be solved analytically. Therefore, it is important
to understand the techniques for solving PDE on a computer, but also the diffi-
culties and pitfalls that can arise when we try to do so. Let us start with a simpler
setting.

4.1. Ordinary differential equations. Consider the ordinary differential equa-
tion

(4.1) ∂ty(t) = F (y(t), t), y(t0) = y0.

The simplest way to solve this equation on a computer is the forward Euler scheme:

Step 1:Discretize the t-axis with step size h, giving grid points t0, t0+h, t0+2h, . . ..
Step 2: Use Taylor-expansion to find that a solution of (4.1) fulfils

y(t+ h) = y(t) + h∂ty(t) +O(h2) = y(t) + hF (y(t), t) +O(h2),

where the notation O(h2) means the following: it is possible to find a function that,
when written in place of the symbol O(h2), ensures that the equality sign is a true
statement. This function may depend on t, y(t), h or whatever other parameters
there are, but it must vanish at least as quickly as a constant times h2 (or whatever
expression we write into brackets after the O), when h → 0.
Step 3: Recall that the initial value of the ODE is y0. Define

y1 = y0 + hF (y0, t0), y2 = y1 + F (y1, t2), . . . , yn+1 = yn + F (yn, tn).

The values yj should approximate the values y(tj) of the true solution; after all,
they solve the difference equation from Step 2 that is an approximation to the
ODE.

The second step above was a bit arbitrary. We could as well have used

y(t− h) = y(t)− h∂ty(t) +O(h2) = y(t)− hF (y(t), t) +O(h2),

which would have led to the scheme

y0 = y1 − hF (y1, t1), y1 = y2 − hF (y2, t2), . . .

This is the backwards Euler scheme, or implicit Euler scheme. In each step we now
still have to solve a (possibly difficult) equation to obtain the value of yj+1 as a
function of the value yj and tj . It is not clear at this moment why anyone would
like to do such a thing, but we will see later when we treat PDE that there are
large benefits in doing so.
However we do it, we hope that the values y1, y2, . . . approximate y(t1), y(t2), . . .,
where y(t) is the true solution. We now want to quantify how good that approxi-
mation is. For this, consider a finite time interval [t0, T ], and put tj = t0+hj, with
N such that tN = T . Let y solve (4.1), and let yn be the approximating solution
under some numerical scheme. We define

ej = |yj = y(tj)| = the error we make at time tj ,
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and

E = max
0 � j � N

ej = the worst error we make on the interval.

Definition: A numerical scheme is called convergent if limh→0 E(h) = 0. It is
called convergent of order p if E(h) � Ch

p for some C > 0 and all h small enough.

How can we check convergence? A good indicator would be how similar our nu-
merical scheme is to the true ODE, for small h. Assume our numerical scheme is
given by

(4.2) yn+1 = yn + hφ(yn, tn, h)

for some function φ that may depend on yn, tn but also on h. In the forward Euler
scheme we had φ(yn, tn, h) = F (yn, tn), so in that case φ was independent of h.
Now let again y(t) be the true solution of the ODE.

Definition: The truncation error τn(h) at step n is defined by the equation

y(tt+1) = y(tn) + h

�
φ(y(tn), tn, h) + τn(h)

�
.

Interpretation: the true solution does not fulfil the recursive scheme (4.2), but
instead fulfils another recursive scheme. τn(h) measures how different the two
schemes are at time tn and for discretisation paramter h.

Definition: A numerical scheme is called consistent if

lim
h→0

�
max

0 � n � N
τn(h)

�
= 0.

It is called consistent of order p if

max
0 � n � N

τn(h) � Ch
p

for some C > 0 and all sufficiently small h > 0.

So, consistency means that the two equations become similar as h → 0, while
convergence means that the two solutions become similar. You should check that
explicit Euler is consistent of order 1.
What about the connections between consistency and convergence? For ODE, the
connection is rather simple.
Theorem: For a numerical scheme given by (4.2) let us assume that

(4.3)
���φ(y, t, h)− φ(ỹ, t, h)

��� � L|y − ỹ|,

for some L > 0, all t � T and all h < h0 with some h0 > 0. (This is called the
Lipschitz condition.) Assume that the scheme is consistent of order p. Then it is
also convergent of order p.
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Proof. On the exercise sheet you are asked to prove the following fact (discrete
Gronwall Lemma): For nonnegative numbers z1, z2, . . . assume that there are C,D >

0 such that zn+1 � Czn +D for all n. Then

(4.4) zn � D
C

n − 1

C − 1
+ z0C

n

for all n. We use this fact in the following argument: Since

yn+1 = yn + φ(yn, tn, h)

y(tn+1) = y(tn) + hφ(y(tn), tn, h) + hτn(h),

we find

en+1 = |yn+1 − y(tn+1)| = en + h

�
φ(yn, tn, h)− φ(y(tn), tn, h)

�
+ hτn(h)

� en + hL

���yn − y(tn)
���+ hτn(h) = (∗).

The inequality above is due to our assumption (4.3). Now we have assumed consis-
tency of the scheme of order p, thus there is an M > 0 such that τn(h) � Mh

p for
all n and all small enough h. Also, |yn−y(tn)| = en. So (∗) � en(1+hL)+Mh

p+1,
and by (4.4) with C = 1 + hL and D = Mh

p+1, we get (notice that e0 = 0)

en � Mh
p+1

(1 + hL)n − 1

1 + hL− 1
= Mh

p 1

L

�
(1 + hL)n − 1

�
.

Finally,

0 � (1 + hL)n − 1 �
�
1 + hL+

(hL)2

2
+

(hL)3

3!
+ . . .

�
− 1

=
�
ehL

�n
− 1 = ehLn

− 1 � e(T−t0)L − 1,

where in the last equality we used that h discretizes the interval [t0, T ], so for
n < N = N(h), hn can never be larger that [t0, T ]. �

Before leave the ODE case and look at numerics for PDE, let us give an example
that shows how implicit schemes can be useful even for ODE. Consider the simple
equation

∂ty(t) = −λy(t), λ > 0, y(0) = y0.

The solution is of course y(t) = y0 e−λt , and it decays to 0 rapidly and monotonously
as t → ∞. Can we say the same for our numerical schemes? Let’s look at the Euler
forward scheme:

yn+1 = yn + hλyn = (1− λh)yn, =⇒ yn = (1− hλ)ny0.

If λ is large, we will need h to be small for this scheme to give something sensible:
indeed, yn → 0 as n → ∞ only if h � 2/λ; and, n �→ yn is monotone decreasing only
if h � 1/λ. So, while the true ODE becomes more and more easy to understand
when λ gets large, the numerical scheme becomes more difficult to implement in
the sense that the time step needed for a sensible solution becomes smaller. After
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all, h will always be finite in real world situations, and the smaller we have to take
it, the longer we need to run a computer in order to find y(10), say.
The situation is different for the Euler backward scheme. In that scheme, we find

yn = yn+1 + hλyn+1 =⇒ yn =
1

(1 + hλ)n
y0,

which is monotonously decreasing to zero regardless of the size of h. We say that
the forward Euler scheme is conditionally stable (i.e. for small enough h it is stable),
while the backward scheme is unconditionally stable. A proper definition of what
a stable scheme means will be given below when we treat PDE.

4.2. Forward schemes for PDE. We consider the general PDE

∂tu(x, t) = (Fu)(x, t) (a < x < b, t > 0),

u(x, t0) = u0(x) (initial condition),

u(a, t) = ga(t), u(b, t) = gb(t) (boundary conditions).

(4.5)

Above, F can be any linear or nonlinear operator, such as

Fu =
σ
2

2
∂
2

xu (heat equation),

Fu = −
1

2
σ
2
x
2
∂
2

xu+ b(x∂xu− u) (Black-Scholes PDE)

Fu = −max
α∈A

�
f(x,α)∂xu(x, t) + h(x,α) +

1

2
σ
2(x,α)∂2

xu

�
(HJB equation).

We now want to solve these numerically, so we discretize time as tn = t0 +hn and
space as xj = hxj with n ∈ N and j ∈ Z. hx can and usually will be different
from h, so we do not discretize the space-time domain into squares but rather
rectangles. For discretizing the spatial derivatives we use again Taylor expansion.
One possibility is

∂xu(xj , tn) ≈
1

hx

�
u(xj+1, tn)− u(xj , tn)

�
.

This can be useful if there is a preferred direction of space, but for the heat equation
and related equations, there is none, and so the symmetric finite difference

∂xu(xj , tn) ≈
1

2hx

�
u(xj+1, tn)− u(xj−1, tn)

�

is usually better. Whether we best use central of ordinary finite differences, or
yet another approximation, depends on the equation and is more an art than a
science. We will not go into this here and only use central spatial differences. The
second derivative is thus approximated by

∂
2

xu(xj , tn) ≈
1

h2
x

�
u(xj+1, tn) + u(xj−1, tn)− 2u(xj , tn)

�
.
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Higher derivatives can be disrcetized similarly, but we will not need them here.
Plugging the discretized derivatives into Fu gives

Fu(xj , tn) ≈ F̃

�
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

�
,

for some function F̃ , in the case where we have only second derivatives. For higher
derivatives, the function on the right hand side above will depend on more values
of u(x, tn), but we will not need this here. As an example, for the heat equation
we find

F̃

�
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

�
=

σ
2

2h2
x

�
u(xj+1, tn)+u(xj−1, tn)−2u(xj , tn)

�
.

The approximation to the PDE then becomes

(4.6) u(xj , tn+1) ≈ u(xj , tn) + hF̃

�
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

�
,

and the numerical scheme is

u
j
n+1

= u
n
j + hF̃ (un

j+1, u
n
j , u

n
j−1, tn, hx),

with u
0
j = u0(xj) as initial condition and u

n
j = ga,b(tn) if xj = a, b, respectively,

as boundary conditions. un
j are again what we would like to be approximations to

u(xj , tn). In our case, it is easy to compute the point u(xj , tn); it is a known func-
tion (namely, F̃ ) of the points u(xj−1, tn), u(xj+1, tn), u(xj , tn) from the previous
time discretisation point, and so we can recursively get all values.
Of course, the question is again how good this approximation actually is. As in
the ODE case, we define the truncation error that measures how different the
numerical scheme is from the actual PDE:
Definition: The truncation error at point (xj , tn) of the numerical scheme (4.6)
is defined to be

T (xj , tn) =
1

h

�
u(xj , tn+1)−u(xj , tn)

�
−F̃

�
u(xj+1, tn), u(xj , tn), u(xj−1, tn), tn, hx

�
,

i.e. the extent to which the true solution does not solve the approximate PDE
(difference equtaion).
Definition: The scheme is consistent if limT (x, t) = 0 for all x and t as hx and
h go to zero. Here, if we want to be very precise, we need to define T (x, t) as the
limit of t(xj , tn) for sequences (tj) and (xn) of grid points with xj → x and tn → t

as both h and hx go to zero.
As for ODE, consistency is the minimal requirement that we have for any numerical
scheme. Let us check consistency for the forward scheme of the heat equation: we
have seen that in this case,

u
n+1

j = u
n
j +

σ
2

2

h

h2
x

(un
j+1 + u

n
j−1 − 2un

j ),
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so the truncation error is

T (xj , tn) =
1

h

�
u(xj , tn+1)− u(xj , tn)

�
−

σ
2

2

1

h2
x

�
u(xj−1, tn) + u(xj+1, tn)− 2u(xj , tn)

�

→ ∂tu(x, t)−
σ
2

2
∂
2

xu(x, t) = 0

as h, hx → 0, and xj → x, tn → t. So, the scheme is consistent. Is it convergent?
There seems to be little hope unless h � Ch

2
x for some C > 0 since otherwise

the prefactor h/h
2
x for getting from one time step to the next would diverge as

h → 0. But as we will see in the next section, even this condition does not ensure
convergence.


