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4.4. Stochastic optimal control. We will now perturb the equation for the state
yt by noise, leading to the stochastic differential equation

(4.11) dys = f(ys,αs) ds+ σ(ys,αs) dWs,

where Ws is Rn-valued Brownian motion. The control problem is to maximize the
expectation of the various utility functions, giving the optimal value function

(4.12) u(x, t) = max
α

Ey(t)=x

�� T

t
h(ys,αs) ds+ g(yT )

�
.

g and h are utility functions. The space of allowed controls is now such that for
some A ⊂ Rm, we need to have αs ∈ A for all s, and an additional condition
is that αs is adapted to the Brownian motion; that is, αs depends only on the
values {Wr : r � s}. This condition is very natural, as it means that the controller
cannot know the future of the (random) evolution modelled by the Brownian
motion. Usually (and also in this lecture) it is enough to let the control αs depend
only on s and ys, i.e. to consider a feedback control.
To find the HJB equation in this case, we proceed as in the deterministic case and
work backwards from the final time T . Clearly,

u(x, T ) = EyT=x(0 + g(yT )) = g(x).

Assume now that we have found u(x, t + δt) for some small δt. Then, by the
dynamic programming principle (which applies also to this case, as one can easily
see),

u(x, t) = max
α

Eyt=x

�� t+δt

t
h(ys,αs) ds+ u(yt+δt, t+ δt)

�

≈ max
α

�
h(x,α)δt+ Eyt=x

�
u(yt+δt, t+ δt)

��
.

The approximate identity in the last line is justified by the fact that s �→ Eyt=x(h(ys,αs))
is continuous, and as δt is very small, the integral is approximately given by the
initial value of the integrand times the length of the integration interval. We re-
formulate this to read

(4.13) 0 = max
α

�
h(x,α) δt+ Eyt=x

�
u(yt+δt, t+ δt)− u(yt, t)

��
.

Using the same trick that we have applied many times in the first few weeks, we
find

Eyt=x

�
u(yt+δt, t+ δt)− u(yt, t)

�
= Eyt=x

�� t+δt

t
du(ys, s)

�

= Eyt=x

�� t+δt

t

�
∂tu(ys, s) +∇u(ys, s) · f(ys,αs) +

1

2
σ(ys,αs)

2∆u(ys, s)
�
ds

�

≈
�
∂tu(x, s) +∇u(x, t) · f(x,αt) +

1

2
σ(x,αt)

2∆u(x, t)
�
δt.

The equality between first and second line above follows from the Itô formula and
the fact that the expectation of a stochastic integral is zero (it is here that we
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need αs to be adapted!). The approximate identity between the second and third
line follows in the same way as the one we have just discussed. We now use this
in (4.13), and after letting δt → 0 we get the following
Theorem: u(x, t) from (4.12) is the solution of the Hamilton-Jacobi-Bellman

equation

(4.14) ∂tu(x, t) + max
α∈A

�
f(x,α) ·∇u(x, t) + h(x,α) +

1

2
σ
2(x,α)∇u(x, t)

�
= 0,

with final condition u(x, T ) = g(x).
Note that if σ does not depend on α, then (4.14) becomes

∂tu+H(∇u,x) +
1

2
σ
2∆u = 0,

with H(p,x) = maxα(f(x,α) ·p+h(x,α)) the same as in the deterministic case!
As in the deterministic case, the derivation above was not fully rigorous, but once
we have the result, we can give a rigorous proof.

Proof of the Theorem. We first show that if v solves the HJB equation (4.14), then
for any adapted (not prescient) control αs we have

v(x, t) � Eyt=x

�� T

t
h(ys,αs) ds+ g(yT )

�
.

The proof is similar to the deterministic case: we consider the path ys resulting
from the stochastic differential equation controlled by our chosen control αs, and
plug this into the solution v of the HJB equation. The Itô formula then gives

dv(ys, s) = ∂sv(ys, s) ds+∇yv(ys, s) · dys +
1

2
∆v(ys, s)(dys)

2 =

= ∂sv(ys, s)ds+∇yv(ys, s) ·
�
f(ys,αs) ds+ σ(ys,αs)dWs

�
+

1

2
σ(ys,αs)

2∆v(ys, s) ds.

Since Eyt=x(v(yT , T )) = Eyt=x(g(yT )) by the final condition of the HJB equation,
and since Eyt=x(v(yt, t)) = v(x, t), we have

Eyt=x(g(yT ))− v(x, t) = Eyt=x(v(yT , T ))− Eyt=x(v(yt, t)) = Eyt=x

�� T

t
dv(ys, s)

�
=

= Eyt=x

�� T

t

�
∂sv(ys, s) +∇yv(ys, s) · f(ys,αs) +

1

2
σ(ys,αs)

2∆v(ys, s) + h(ys,αs)− h(ys,αs)
�
ds

�

� − Eyt=x

�� T

t
h(ys,αs) ds

�
.

The last inequality follows, as in the deterministic case, from the fact that v solves
the HJB equation, i.e. the maximum over all controls of all the terms under the
integral except the last one is zero. So we find that

v(x, t) � Eyt=x

�� T

t
h(ys,αs) ds+ g(yT )

�
,
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and maximizing over all controls gives that v is at least as large as the optimal
value function. Now again, we can see that (for each path of the Brownian motion),
the feedback control obtained from the HJB equation leads to the value function
v(x, t), so that v(x, t) is not only a solution to the HJB equation, but indeed also
a value function. Therefore it must be the optimal value function. �

4.5. Application: Optimal portfolio selection and consumption. This is a
problem considered by Robert Merton (J. Econ. Theory 3, (1971) 373-413). Here
is the setup:
bs is a riskless asset with dbs = rbs ds, so bs = b0 ers .
ps is a risky asset solving dps = µpsds+ σpsdWs.
x is our wealth at the starting time t.
The control parameters are α1(s), the fraction of wealth in the risky asset ps at
time s; clearly, we need 0 � α1 � 1.
α2(s) is our rate of consumption at time s. We want α2 � 0.
The equation for the total wealth controlled by α1 and α2 is then

(4.15) dys = (1− α1(s))ysrds+ α1(s)ys(µ ds+ σ dWs)− α2(s) ds.

We impose the state constraint ys � 0. The most elegant way to do this is to
define τ(x) = inf{s � t : ys = 0}; we then have the optimal value function (with
discounting) given by

u(x.t) = max
α1,α2

Eyt=x

�� min(T,τ(x))

t
e−ρs

h(α2(s)) ds
�
.

We want the utility function h to be monotone increasing and concave, as in the
deterministic case. Our eventual choice will be h(α) = α

γ with 0 < γ < 1.
The derivation of the HJB equation with discounting is entirely parallel to the
general case that we just treated. The result is

(4.16) ∂tu+ max
α1,α2

�
e−ρt

h(αs) + (xr+α1(µ− r)x−α2)∂xu+
1

2
x
2
σ
2
α
2

1∂
2

xu

�
= 0.

We can find the optimal α1 by simple differentiation: the determining equation is

x(µ− r)∂xu+ σ
2
x
2
∂
2

xuα1 = 0,

giving for the optimal α1:

(4.17) α
∗
1 = − (µ− r)∂xu

σ2x∂x2u
.

Have we actually found a maximum? Only if ∂2
xu > 0, otherwise it would be a

minimum! We need to keep the in mind and check at the end that it holds. Also,
we have so far ignored the constraint 0 � α1 � 1. We will have to come back to
this later, too.
The optimal α2 is now determined by the equation

(4.18) e−ρt
h
�(α2) = ∂xu(x, t),
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where h� is the derivative of h. It is intuitively clear that ∂xu > 0, as greater initial
wealth will give greater optimal value (try to find a mathematical argument for
this!). Also, h�

> 0 by the assumption that h is monotone increasing, h��
< 0 by

concavity. So the optimal α∗
2 > 0 is nonnegative.

We now specialize to the case h(α) = α
γ to make further progress. In the same way

as on last week’s problem sheet, we see that u must be of the form u(x, t) = g(t)xγ .
Since the optimal value is certainly nonnegative, we will have g(t) � 0. Thus
∂xu = γg(t)xγ−1, and ∂

2
xu = γ(γ − 1)g(t)xγ−2. Note that this means ∂

2
xu < 0,

which was one of the conditions that we had to remember checking.
Now (4.17) becomes

α
∗
1 =

µ− r

σ2(1− γ)
,

and (4.18) reads

α
∗
2 = ( eρt g(t))1/(γ−1)

x.

We can see that 0 � α
∗
1 � 1 if

(4.19) 0 � µ− r � σ
2(1− γ).

We will assume for the moment that this extra condition holds. Putting u(x, t) =
g(t)xγ back into the equation, we find that g needs to satisfy

∂tg(t) + νγg(t) + (1− γ)g(t)
�
eρt g(t)

�1/(γ−1)

= 0,

with final condition g(T ) = 0, and ν = r + (µ−r)2

2σ2(1−γ) . This is of the same form as
the equation that we have seen in the deterministic optimal consumption problem,
and by following the steps given in Problem 1 on Sheet 5, we find that the solution
is

g(t) = e−ρt
� 1− γ

ρ− νγ

�
1− e−

(ρ−νγ)(T−t)
1−γ

��1−γ
.

So, the optimal value function is g(t)xγ with the above g(t). The optimal control
α
∗
1 is constant, i.e. it depends neither on time nor on the current wealth. This

means that our investment decision is not influenced by our current wealth, and
also not by the time we still have to consume. Instead, it is fully determined by
the difference µ− r of the expected return of the asset and the bond rate, divided
by a factor σ2(1−γ). This factor σ2 is easy to interpret: large uncertainty σ makes
it more unattractive to invest in the risky asset. The factor (1− γ) is less obvious.
It means that if we can consume larger amounts of wealth with relatively little
penalty (i.e. γ close to 1), then we should invest less into the risky asset. Now, all
of this is for µ > r. In the case µ < r, our extra condition (4.19) does not hold; it
is not difficult to see that in this case, α∗

1 = 0 is the optimal allowed control. So, if
the expected rate of return for the risky asset is less than the bond rate, it is not
worth investing into it at all. On the other hand, if µ − r > σ

2(1 − γ), then the
return of the risky asset is so much better that the bond rate, that we will put all
our wealth into it, and α

∗
1 = 1 in that case.
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Unlike α
∗
1, the optimal α∗

2 in (4.18) does depend on time. Now that we know g(t),
we put it into (4.18) (this is part of the feedback!) and find

α
∗
2(x, t) =

1− γ

ρ− νγ

�
1− e−

(ρ−νγ)(T−t)
1−γ

�
x.

At given time s, our wealth will also be known to be ys. So at that time, we
replace x with ys in the above equation. This is the second part of the feedback.
This means that the optimally controlled asset solves the SDE

dys = (r + (µ− r)α∗
1)ysrds−

1− γ

ρ− νγ

�
1− e−

(ρ−νγ)(T−s)
1−γ

�
ys + α

∗
1σys dWs.

The fact that α∗
2(ys, s) is proportional to ys guarantees that the whole right hand

side of the SDE is proportional to ys. This means that ys � 0 (since, should it
ever hit zero (from above, obviously), its time derivative will be zero, and it will
be stuck there). Thus luckily the state constraint is automatically fulfilled, and
indeed we do not need τ(x) in the end. The optimal consumption rate is easy as a
function of wealth (proportional to it), but rather difficult as a function of time. It
seems strange that it goes to zero as t → T . One would have thought it should go
to infinity then, as there is nothing to lose by consuming it all in the last instant. I
don’t fully understand this intuitively. One explanation is that we are optimizing
the expected utility, and so the optimal consumption is made so that in the last
instant, on average there won’t be much left to consume. But this is not fully clear
to me.


