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2.3. The heat equation. A function u(x,t) solves the heat equation if (with
o >0)

1
(2.10) Opu — 502Au =0.

In the simplest case, (2.10) is supposed to hold for all x € R™, and all ¢ > 0, and
there is an initial condition u(z,0) = ug(x). We have seen this equation already: if
in (1.3) we put F' = 0 and G = 02, then we obtain (2.10). In other words, the heat
equation is the Kolmogorov backward equation for Brownian motion. It is one of
the most important equations in physics, as it models heat flow (hence the name),
diffusion of liquids, and many more things.

From Black-Scholes to heat: We will now show that the BSPDE can be trans-
formed into a heat equation by a change of variables. Recall the BSPDE given in
(1.9):

(2.11) O P+ %azﬁagp + b(x0, P — P) =0,

with final condition P(z,T) = ®(z). To understand how anybody could guess
the variable transform that we are going to use, note that in (2.11), x need to be
positive, as it is a stock price; and, that we have a final condition at T'. In contrast,
in (2.10), we have x € R and an initial condition. So the least we would have to do
to connect the two is to invert time, and to map the nonnegative x into something
on all of R. The latter is just what the logarithm does, and an additional hint for
uisng it would be that geometric BM behaves like the exponential of BM itself.
After these explanations, the following transformation may seem a bit less arbi-
trary: we put

1
y=Ilnz (sox=¢eY), and T = 502(T —t).
Then we put
2
U(y7T):P(ey7T_72T) (: P(Z‘,t))
o

Let us try whether v solves the heat equation:
2 2 2
aTv(y’T) = —EGQP(ey T — ﬁT) = —ﬁﬁtP(m,t),
2
vy, ) = ¥ W P(eV, T — =) = 20, P(a,t),
o

8;v(y, )= (e¥)207P(e¥, T — %T) = e P(e¥, T — %T) = 2202P(z,t) — 20, P(z,1t).

Above, 01 P means the function that one gets from P by differentiating with re-
spect to the first argument. Note that this is different from 0, P(e?,...) since this
would invoke a chain rule, and also better than 0, P(e¥,...), where the reader is
asked to guess that the first argument is somehow connected to the letter z. This
example shows that the inherited notation for derivatives is not satisfactory (it
uses a dummy variable explicitly), but unfortunately it is very deeply entrenched
in mathematics and there is no hope to overcome it.
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Back to the calculation. We find
2
0-v — 631) = —;&P - 1328313 — 20, P

2 o2 242 o2
2 o2
== <b(:z:6'mP —P)+ Qm&EP>
2
=——= ((=b+0?/2)0yv + bv) .
So v solves
2b 2b
(2.12) 0rv — 851) +(1- ?)%v + V= 0.

This is not quite yet the heat equation. To proceed, let us put k = 2b/02, and
u(y,7) = e~ Tu(y, ),
thus v(y,7) = e*¥T87 u(y, 7). Then (2.12) becomes
(Bu + 0ru) — (aPu + 2a0,u + 3Zu) + (1 —k)(au + Oyu) + ku = 0.

Then d,u terms vanish if —2a 4 (1 — k) = 0, and the u terms vanish if 8 — a? +
(1 —k)a+k =0. This gives

1—k (k+1)2
= B = T
With this choice of «, 3, the function u indeed solves the heat equation
(2.13) Oru — 8§u =0, u(y,0) = e2*=D¥ ().

So to solve the BS-PDE, we have to solve (2.13) to get u, then get v from wu, and
then undo the change of variables to find P(z,t) = v(Inz, $0%(T — t)). This will
work for any payoff-function ®, provided we can solve the heat equation with the
corresponding initial condition. This we can indeed do:

Solution for the whole-space heat equation:

The function

1 _lz—yl?
(2.14) f(z,t) = Wt)n/g/w e 22 fo(y)dy
solves the heat equation (2.10) with initial condition f(«,0) = fo(x). The function
1 |
Flx,t)= —————>¢ 2o

(2mo2t)n/2
is called fundamental solution of the heat equation. It actually also solves the heat
equation for ¢ > 0, except when & = 0.
Remarks: F' is the transition density of Brownian motion, i.e. P(W; € A) =
J4 F(z,t) dz. This is no accident, but is related to the time reversibility of Brow-
nian motion and the Kolmogorov equations. We will not discuss this further in the
present lecture.
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Also, we need to place some restrictions on the initial condition fj for the solution
to make sense. In fact, fy need not be continuous, but it must not grow too fast at
infinity. If fo(x) < M e2* | then the solution (2.14) at least exists for finite time.
If fo(z) < M ecl®l>™" | for some small § > 0, then the solution (2.14) exists for all
times. Translating the latter condition back to the Black-Scholes coodinates gives
u(y,0) = e~ 32(k-1y P(e¥) < Medv™ o x_%(k_l)q)(m) < M eclna)*™
This works fine if ®(z) < |z|" for any r > 0, but will fail if & grows exponentially
at infinity.

2.4. Solution of the heat equation on a half space. This solution will be
useful for the pricing of barrier options. We want to solve

1
8tu=§8§u=0 fort > 0,z > 0.

u(xv 0) = g<0)’ u(07 t) = (b(t)

It seems at first that the boundary data needs to fit together for this equation to
make sense; more precisely, when lim;_,o ¢(t) # lim,_,¢ g(x), then it seems that we
want on the one hand a function that is twice differentiable in x and differentiable
in ¢t (for the PDE to make sense), but on the other hand is discontinuous at the
boundary. We will however see that this is not a problem. To solve (2.15), let us
split it into two easier problems.

Proposition: Assume that v solves

(2.15)

(2.16) O = %821), v(z,0) = g(z),v(0,t) =0,
and that w solves

(2.17) Dw = %in, w(z,0) = 0,w(0,1) = ¢(t).
Then u = v + w solves (2.15).

Proof. 1t is clear that w fulfils the boundary conditions, and that it solves the PDE
follows from the fact that the derivatives can be dsitributed onto v and w, who
individually solve the heat equation. O

It will turn out to be an advantage if in (2.17), we have lim;_,o ¢(t) = 0; then
the formula for the solution will be easier to make sense of. This can be easily
achieved: we replace ¢(t) with ¢(t) — ¢(0) in (2.17), and g(z) with g(z) — ¢(0) in
(2.16). To the solution @ that we obtain from this we only have to add ¢(0), which
then solves the original equation.

Solution of (2.16):

We use a reflection trick: Let us put

(z) = { g(z) if z >0,

g —g(—x) ifx<0.
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We now solve the whole space problem with initial condition g, using (2.14). The
result is

_lz—y|?

v(%t):\/%ﬂt /Z = 5y) dy = (#).

We now change integration variables from y to —y, with the result
_letwl? -1 e

1 - (=) =yl
= — 2t a(— d == — - 2t a d = —pu(— 7t
(*) th/oo e g(—y)dy 5 ) © g(y)dy = —v(-w,1)

So, the solution has the same symmetry as the boundary condition for all times!
In particular, v(0,t) = —v(0,t), which only leaves the possibility v(0,t) = 0. Thus
v restricted to > 0 indeed solves (2.16).

The above solution can be written in terms of the fundamental solution F(z,t) =

\/21W exp(—‘;—:). Namely, simple manipulations show that

v(x,t) = /OOO G(z,y,t)g(y) dy, with G(z,y,t) = F(z — y,t) — F(z + y,1).

Note the striking similarity to the Greens function we found in the solution to
(2.6). G is indeed the Greens function for the heat equation. This will become
clear when we consider the

Solution to (2.17):

As (2.17) is a bit like the boundary value problem (2.6), we can expect a similar
solution formula, and there is indeed one: the function

(2.18) w(z,t) = /0 0yG(x,y,t — s)|y=00(s) ds

solves (2.17). The partial derivative of G can of course be computed, leading to

w(z,t) = /0 TSty e 2= ¢(s)ds.

The proof of this formula goes roughly as follows: Since F' solves the heat equation,
so does (z,t) — G(x,y,t) for all y, and also (x,t) — 9,G(x,y,t —s) for all s (just
exchange the order of derivatives). But when two or more functions solve the
heat equation, (or, any linear equation), then all weighted sums of these function
solve the same equation (just distribute the derivatives), and this even applies to
convergent sums of infinitely many terms, and even integrals. So w as given by
(2.18) does solve the heat equation. For the boundary conditions: naively, w(z, 0) =
0 as the range of the integration is zero. However, we have to approach this limit
coming from positive ¢, which makes it less trivial. Likewise, the limit of w as
2 — 0 needs to be studied carefully, and it needs to be shown that it converges to
@(t). This is beyond the scope of the present lecture and will not be done here.
Pricing a barrier option

A barrier option changes its value suddenly when the asset process y, hits a pre-
defined barrier. For example, a down-and-out call with barrier X will be worthless
if the stock falls below X before maturity. Otherwise, it behaves like a normal call.
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Of course, such options are very little different from gambling in a casino, and
encourage massive market manipulation to temporarily suppress a stock price, and
should not be legal. But this is not out concern here, we are trying to price them,
assuming that no manipulation takes place. In that case, interestingly, the Black-
Scholes PDE gives a fair price, so they are not fundamentally different from vanilla
options. The procedure goes like this: We start with the BSPDE with boundary
condition zero at asset value X. We do the variable transform to turn this into a
heat equation with zero boundary condition at a suitably modified place. We then
solve this heat equation using the theory above. Finally we transform back to the
Black-Scholes coordinates. The result for a down-and-out call with barrier X is

V(z,t) = Vp(lnz, %&(T — 1) - (%)l_k Vo(In X? %UQ(T — 1)),

with k = 2r /02, and where V; is the value of a vanilla option with the same strike
price. The details will be worked out on an exercise sheet. Just notice that the
formula makes sense: when the stock price x is much larger than the barrier price
X, the price is almost that of a vanilla option, while it is almost zero if the stock
price x is close to X.



