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In the case of one nuclear degree of freedom, we derive an explicit formula for the nuclear wave
function transmitted through an avoided crossing, and show that it agrees to high accuracy with
precise numerical calculations.

The time-dependent Born-Oppenheimer approxima-
tion (BOA) is at the basis of our understanding of dy-
namics of molecules. The small ratio ε2 of electronic and
nuclear mass allows to replace the electronic degrees of
freedom with an effective potential, and to separate the
nuclear dynamics according to the different electronic en-
ergy surfaces. This dramatically reduces the complexity
of the problem.

Despite its success, situations where the BOA fails
are of great interest in quantum chemistry. These oc-
cur when electronic energy levels are not well separated
for a given nuclear configuration. Important applications
include photo-dissociation of diatomic molecules like NaI
[1], or the reception of light in the retina [2]. Two ba-
sic types of the breakdown of the BOA occur: conical
crossings as appearing in [2], and avoided crossings. The
latter are typical for systems with one nuclear degree of
freedom [1, 3], and are the topic of the present Letter.
We give an explicit formula, cf. (12), for the transmitted
wave function at a generic avoided crossing, using only
data that is local in time and space. An algorithm for
calculating this wave function is then straightforward.

The importance of non-adiabatic transitions has led to
many efforts to understand and predict them. A simpli-
fication of the problem is to replace the nuclear degree
of freedom by a classical trajectory. It is both ancient
[4] and well-understood [5, 6], and leads to the famous
Landau-Zener (LZ) formula for the transition probabil-
ities between electronic levels. This formula lies at the
basis of several surface hopping models, such as [7–9].
While these and other [10] trajectory based methods
yield reasonably good transition probabilities, their ac-
curacy in predicting the shape of the transmitted wave
function is limited [7]. An improvement to the LZ tran-
sition rates, based on the full quantum scattering theory
of the problem, has been proposed by Zhu and Nakamura
[11]. Again, only transition rates are treated, and not the
full transmitted wave function. Hagdeorn and Joye [12]
derive rigorous asymptotic formulas for the transmitted
wave function, in the limit of ε→ 0. However, these for-
mulas are difficult to apply in practice and are neither
local in time nor space. In contrast, (12) is trivial to
implement.

We consider a two level system with a Hamiltonian
with one effective degree of freedom:

H = − ε2

2 ∂
2
xI + V (x),

where I is the 2 × 2 unit matrix, and

V (x) =

(
X(x) Z(x)
Z(x) −X(x)

)
+ d(x)I

is the real-symmetric potential energy matrix in the dia-
batic representation. Units are such that ~ = 1 and the
electron mass mel = 1. ε2 is the ratio of electron and
reduced nuclear mass.

The time dependent Schrödinger equation is given by
iε∂tψ(x, t) = Hψ(x, t), with ψ ∈ L2(R,C2), in the
timescale where the nuclei move a distance of order one
within a time of order one. It is convenient to switch to
the adiabatic representation: let U0(x) diagonalize V (x)
for each x, and define ψ0 = U0ψ. Then ψ0 solves

iε∂tψ0 = H0ψ0, (1)

with H0 given to leading order by

H0 = −ε
2

2
∂2

xI +

(
ρ(x) + d(x) −εκ0(x)(ε∂x)
εκ0(x)(ε∂x) −ρ(x) + d(x)

)
. (2)

Above, ρ =
√
X2 + Z2 is half the energy level separation,

and κ0 = (Z ′X −X ′Z)/(Z2 +X2) is the adiabatic cou-
pling element. A consequence of the choice of time scale
in (1) is that solutions will oscillate with frequency 1/ε.
Thus the operator ε∂x is actually of order one.

Generically, the entries of V are analytic in the nuclear
coordinate x, and eigenvalues of V do not cross [3]. An
avoided crossing is a (local or global) minimum of ρ(x).
Our aim is to describe the non-adiabatic transitions: As-
sume that (1) is solved with an initial wave packet ψin

that is fully in the upper adiabatic level; i.e. the second
component of ψin is zero. The initial momentum is such
that the wave packet travels past an avoided crossing.
What is the shape and size of the second component of
ψ0(x, t), to leading order, long after the avoided crossing
has been passed?

Time-dependent first order perturbation theory gives a

straightforward answer. We write H± = − ε2

2 ∂
2
x ± ρ(x) +

d(x) for the Hamiltonian generating the uncoupled dy-
namics in the upper (resp. lower) band. To lowest order
in ε, the first component ψ+

0 of ψ0 evolves by the BOA,

ψ+
0 (t) = e−

i
ε
tH+

φ, where we have chosen the initial con-
dition φ at time t = 0. Thus

ψ−
0 (t) = −iε

∫ t

−∞
e−

i
ε
(t−s)H−

K0 ψ
+
0 (s) ds (3)
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to leading order, with the operator K0 = κ0(x)(ε∂x).
However, (3) gives very little insight into the nature of
the transmitted wave function. In particular, it appears
to be of order ε, while the true ψ−

0 is expected to be
much smaller (exponentially small in ε) away from the
transition region [13].

A better picture is obtained by studying superadia-

batic representations [14]. Like the adiabatic represen-
tation, these are implemented by unitaries Un acting in
L2(R,C2), which are now pseudo-differential operators
rather than multiplications. In [15], a general recursive
scheme for computing Un is given. When Un is the n-
th superadiabatic unitary, and Hn = U−1

n HUn, then to
leading order

Hn = −ε
2

2
∂2

xI +

(
ρ(x) + d(x) εn+1K+

n+1

εn+1K−
n+1 −ρ(x) + d(x)

)
. (4)

Therefore, with ψn = Unψ, (3) can be replaced by

ψ−
n (t) = −iεn

∫ t

−∞
e−

i
ε
(t−s)H−

K−
n+1 e−

i
ε
sH+

φds. (5)

Equation (5) correctly describes the wave function in the
n-th superadiabatic representation. For suitable (’opti-
mal’) n, (5) corresponds to a single crossing transition,
where ψ−

n (t) builds up monotonically. This was shown
in a special case [16], and we expect it to hold in gen-
eral. However, the adiabatic or even diabatic description
of the transmitted wave function is not, in general, eas-
ily derived from (5): Un is a pseudo-differential opera-
tor and is neither easy to analyze nor to implement on a
computer. This is not surprising, as e.g. near the avoided
crossing ψ−

0 displays wild oscillations of order ε, and we
have no reason to expect any simple description.

The situation is different in the scattering regime.
When V is approximately constant, Un and U0 agree up
to small errors. Therefore (5) can be used to compute
the transmitted wave function after an avoided crossing,
sufficiently far away from the crossing, in the adiabatic

representation. But even then, its usefulness depends on
our ability to understand the n-th superadiabatic coupling

operator K−
n+1 to leading order. In the present context,

this can be done [16]: K±
n is the Weyl-Quantisation

K±
n ψ(x) =

1

2πε

∫

R2

dξ dy κ±n
(

x+y
2 , ξ

)
e

i
ε
ξ(x−y) ψ(y) (6)

of the symbol κ±n . The latter is determined by a recur-
sive system of differential equations, which follows from
the established scheme [15] by a choice of basis. It has
been derived in [16] for the case d(x) = 0; the extension
to d(x) 6= 0 is straightforward. To leading order, Kn

turns out to be a differential operator of order n, with
symbol κn(p, q) =

∑n
j=0 p

jκn,n−j(q). κn,j(q) can be cal-
culated explicitly [16] for all n and j, but at present we
only control the asymptotics of κn,0(q). For moderate

n, the latter dominate, but in the limit n → ∞, they
do not. Nevertheless, we approximate (6) by keeping
only κn,0(q). This appears dubious at first, as typically
n ∼ ε−1, but it can be justified when the incoming mo-
mentum is large [16]. In practice, it turns out that even
for moderate incoming momenta our theory gives excel-
lent results; for those cases where it does become inac-
curate, the transition probability is extremely small. We
will comment more on this later on.

The asymptotics of κ±n,0 can be determined in the fol-
lowing generic case. Assume an avoided crossing (a min-
imum of ρ) at x = 0. Write ρ2(q) = δ2 + g(q)2 with
g(0) = 0 and g analytic. Since g2 is quadratic at 0, a
Stokes line (i.e. a curve where Im(ρ) = 0) crosses the
real axis perpendicularly. For δ not too large, following
this line either side into the complex plane leads to a
pair of complex conjugate points qδ, q

∗
δ where ρ has com-

plex zeroes. Berry and Lim [5] show that, in the natural

scale τ(q) = 2
∫ q

0
ρ(r) dr, these zeroes give rise to a pair of

complex first order singularities of the adiabatic coupling
function κ0. Near q = 0, κ0(q) then has the form

κ0(q) =
4

3
ρ(q)

(
i

τ(q) − τ∗δ
− i

τ(q) − τδ
+ κr(τ(q))

)
,

with τδ = τ(qδ). κr has no singularities of order ≥ 1 for
|τ | ≤ |τδ|. Solving the recursive equations for κ±n involves
taking high derivatives of κ0; by the Darboux principle
[6, 17], the complex singularities τδ and τ∗δ closest to the
real axis dominate the asymptotics. It follows [6, 16] that
to leading order,

κ±n,0(q) = (−i)n

π ρ(q)(n− 1)! hn(τ(q)), (7)

with hn(τ) = i(τ − iτ∗δ )−n − i(τ − iτδ)
−n.

A direct calculation now gives the Weyl-Quantisation
of pnκ±n,0(q) as

K±
n,0 =

n∑

j=0

(
n

j

) ( ε
2i

)j (
∂jκ±n,0(x)

)
(−iε∂x)

n−j
.

Relevant values of n are of order 1/ε. For these, κ±n and
its derivatives are concentrated in a

√
ε neighbourhood of

x = 0. Thus the action of K−
n,0 on any function without

support near zero is negligible. As semiclassical wave
packets are of width

√
ε and travel with speed of order

one under the dynamics, the dominant contribution to
(5) comes from times s where the upper band wave packet
is very close to the transition point x = 0. When we
choose the coordinates so that the initial condition φ is
concentrated at x = 0, relevant times s are of order

√
ε.

Using this, we now show that under the integral in (5),
the adiabatic potentials a±(x) = ±ρ(x) + d(x) entering
H± can be replaced by their first order approximations
at 0, given by a±1 (x) = ±δ+λx: we write g± = a±− a±1 ,
and H±

1 = −ε2∂2
x/2 + a±1 , and obtain

e−
i
ε
sH± − e−

i
ε
sH±

1 = − i

ε

∫ s

0

e−
i
ε
(s−r)H±

1 g± e−
i
ε
rH±

dr.
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As g± is quadratic near x = 0, g± e−
i
ε
rH±

φ is of order ε
in a

√
ε neighbourhood of 0. There, the right hand side

above is bounded by the length of the integration region√
ε, while outside that neighbourhood, application ofK−

n

yields a negligible result. As the image underK−
n is again

sharply peaked around 0, a similar argument for e
i
ε
sH−

shows the claim.
We now switch to the Fourier representation. The cor-

rect scaling is retained by the semiclassical Fourier trans-
form

f̂ε(k) =
1√
2πε

∫
e−

i
ε
kq f(q) dq. (8)

We define K̂n through K̂nψ̂
ε = K̂nψ

ε
, and a direct cal-

culation using (6) gives

K̂±
n,0f(k) =

1√
2πε

∫

R

dη κ̂±n,0

ε

(k − η)
(

η+k
2

)n

f(η). (9)

We use (8) on (7), and change variables from q to τ in
the integral. Using dτ = 2ρ(q)dq we get

κ̂±n,0

ε

(k) = (∓1)n
√

2
π3ε(n− 1)!

∫
e

i
ε
kq(τ) hn(τ) dτ.

Since ρ has a minimum δ at q = 0, we have q(τ) =
τ/(2δ) + O(τ3). The third and higher order terms are
negligible since h is concentrated around q = 0, and an
application of the residual theorem gives

κ̂±n,0

ε

(k) = i

√
2δ√

πε(2δ)n

(
k

ε

)n−1

e
|k|
2δε

iτδ .

For the propagators, the Avron-Herbst formula [18] gives

e−
i
ε
sĤ1

± = e−i λ
2

s
3

6ε eλs∂k e−
i

2ε
((k2±2δ)s+λks2) .

The shift terms of e±
i
ε
sĤ1

± , acting on the variables η
resp. k, have the effect of replacing the term (η + k)n

with (η + k + 2λs)n in (9), and leave functions of η − k
unchanged. We abbreviate a = η+k, b = η−k, and find

ψ̂−
n

ε

(k, t) =
1

4πε
e−

i
ε
tH−

∫ t

−∞
ds

∫
dη (a− 2λs)n+1×

(
b
4δ

)n
ei

τδ
2δε

|b| e
i

2ε
((ab−4δ)s+λbs2) φ̂ε(η). (10)

(10) describes, to leading order, the transmitted wave
function at all times t in the n-th superadiabatic rep-
resentation, for n large enough. When t is significantly
larger than

√
ε, the domain of integration in s can be

extended to R. We write (a− 2λs)n+1 = an+1 exp((n +
1) log(1 − λs/a)), and expand the logarithm to second
order in s. Gaussian integration in s yields

ψ̂−
n

ε

(k, t) =
e−

i
ε
tH−

4πε

∫
dη a

√
2πεa2√

4µλ2+iλa2b

(
ab

4δ

)n

ei
τδ
2δε

|b| ×

exp

(
(4µλ− ia(ab− 4δ))2(4µλ− ia2b)

8ελ((4µλ)2 + (a2b)2)

)
φ̂ε(η), (11)

with µ = εn. (11) reduces our task to the calculation of a
one-dimensional integral, but some tricky points remain:
the choice of n is not obvious, and one oscillatory inte-
gral has to be calculated for each desired value of k. A
systematic analysis of (11) is currently in progress; here
we restrict to an important special case. If, e.g. for sym-
metry reasons, the slope λ of the potential surfaces is
much smaller than the energy gap at the crossing point,
Laplace’s method can be applied to the integral in (11),
with respect to the small parameter λ. Both station-
ary phase and maximal absolute value are attained when
ab = 4δ. There, the dependence of (11) on n disappears,
and we obtain the main result of the present Letter: for
times t≫ √

ε, the transmitted wave packet is given by

ψ̂−ε
(k, t) = e−

i
ε
tH−

1{k2>4δ}
v + k

2|v| ei
τδ
2δε

|k−v| φ̂ε(v),

(12)
where v = v(k, δ) = sgn(k)

√
k2 − 4δ. We write τδ = τr +

iτc; the distance of τδ from the real axis determines the
LZ-transition amplitude, while the dislocation relative to
the crossing point on the real axis induces a phase shift.

The physical significance of (12) becomes clear when
we take φ as a plane wave with momentum p0. Then
φ̂ε = δp0

, and ψ− is again a plane wave. Its momen-

tum k(p0) = sgn(p0)
√
p2
0 + 4δ is determined by energy

conservation. Its amplitude contains a LZ type exponen-
tially small term with rate −(2δε)−1τc|k(p0) − p0|. The
rate increases towards zero when p0 grows: fast parts of
the wave function are less adiabatic, and therefore are
more likely to make the transition. For large p0 we have
k(p0)− p0 ≈ 2δ/p0, and we recover the classical LZ tran-
sition rate −(p0ε)

−1τc. Incidentally, the regime of large
p0 is also where (12) becomes asymptotically exact; but
we emphasize that for moderate p0, numerical tests show
the transition rates obtained from (12) to be far superior
to the classical LZ ones. To summarize, non-adiabatic
transitions decouple in momentum space. Each incoming
momentum makes a separate, single step LZ-type tran-

sition, with the outgoing momentum determined by en-
ergy conservation. The transition rate, phase shift and
pre-factor approach the classical LZ ones for large mo-
menta, but differ for moderate momenta, where they are
well approximated by those given in (12).

Our results suggest a simple algorithm for computing
non-adiabatic transitions: evolve the upper band wave
function according to the decoupled evolution until an
avoided crossing is detected, e.g. by maximality of the
adiabatic coupling functions. There use (12) (or, if nec-
essary, (11)) with t = 0 to produce a transmitted wave

packet ψ̂−
n

ε

(k) at the transition point. Propagate this
according to the decoupled lower band dynamics. This
is numerically much cheaper than the fully coupled dy-
namics, where the time step has to be extremely short
due to the smallness of the required final result.

For a numerical demonstration of (12), we choose
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FIG. 1: Numerical illustration of formula (12): a) shows the
potential energy surfaces used. b) and c) show the numerical
results for Gaussian resp. non-Gaussian incoming wave func-
tion (embedded graph). Displayed is the absolute value of

the transmitted wavefunctions cψ−

ε

as calculated using (12)
(solid lines, left axis), along with the absolute value of the

error between cψ−

ε

and the exact numerical calculation cφ−

ε

(dashed lines, right axis).

X(x) = α tanhx + βx2/ coshx, Z(x) = δ and d(x) =
λ tanhx, with α = 1/2, β = 1/4 and δ = 1/2. τδ, which
in our special case is known analytically, can in general
be easily obtained numerically as a line integral along
sqδ, 0 ≤ s ≤ 1. We find τ1/2 ≈ −0.13099 + 0.58917i.
We are interested in situations where λ ≪ α and choose
λ = 0.1, cf. Fig. 1 a).

For solving (1), the initial condition and time axis are
again chosen such that the wave packet ψ+

0 (t) reaches
the avoided crossing (located at x = 0) at time t = 0.

We treat the standard case of a Gaussian, φ̂g

ε
(p) =

1
N1

exp
(
− (p − p0)

2/(2σ2ε)
)
, and the case φ̂ng

ε
(p) =

1
N2

exp
(
− (p − p0)

6/(2σ2ε)
)
. N1 and N2 are L2 nor-

malisations, and we take p0 = 5, ε = 1/50 and σ2 = 2.

The numerically exact solutions φ̂−
ε
are obtained using

a standard symmetric Strang splitting in Matlab. We
evolve φ backwards in time with the decoupled dynam-

ics, until it is concentrated in a region where the energy
levels are essentially flat. The result is taken as the ini-
tial condition for the fully coupled dynamics, run until a
time t∗ > 0 where again the energy levels are flat, i.e. the
lower component ‖ψ−

0 (t∗)‖ is constant in time. ψ−
0 (t∗)

is then evolved backwards to t = 0 with the uncoupled
dynamics, where its Fourier transform is compared with
the result of applying (12) with t = 0. Numerical conver-
gence is assured by repeated reduction of the time step.
The results are shown in Fig. 1.

For both incoming wave functions, the absolute value
of the relative error is less than 1%, over the full interval
where the transmitted wave function is essentially sup-
ported. The transition probability ‖ψ−‖2 in the Gaus-
sian case computes to 9.97 × 10−6 using (12), with a
relative error of around 1.4%. For comparison, the best
results obtained by surface hopping algorithms have an
error of around 3% [7].

In addition to the examples presented here, we tested
a wide range of parameters. Provided that we keep λ
small enough, all results are good to within a few percent.
They start to deteriorate either when ε (and thus ‖ψ−‖)
becomes too large and we leave the adiabatic regime; or
when p0 (and thus ‖ψ−‖) gets too small and our approx-
imation of keeping only κn,0 in (6) becomes inaccurate.
In the first case, we found good agreement up to transi-
tion probabilities ‖ψ−‖2 ≈ 10−2, and in the second case
down to ‖ψ−‖2 ≈ 10−20. The latter suggests that unless
non-adiabatic transition are so small that they are likely
to be physically irrelevant, they are accurately described
by (12).
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