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1. Introduction

The photo-dissociation of diatomic molecules is one of the paradigmatic chemical reactions of
quantum chemistry. The basic mechanism is that a short laser pulse lifts the electronic configura-
tion of the molecule into an excited energy state. The nuclei then feel a force due to the changed
configuration of the electrons, and start to move according to the classical Born-Oppenheimer
dynamics. Then, at some point in configuration space, the Born-Oppenheimer surfaces of the elec-
tronic ground state and first excited state come close to each other, leading to a partial breakdown
of the Born-Oppenheimer approximation. As a result, with a certain small probability the electrons
fall back into the ground state, facilitating the dissociation of the molecule into its atoms. This
important mechanism is at the heart of many processes in nature, such as the photo-dissociation
of ozone, or the reception of light in the retina [19]. For further details on the general mechanism
we refer to [13].

The mathematical problem associated with photo-dissociation are non-adiabatic transitions at
avoided crossings in a two-level system, with one effective spatial degree of freedom. Thus, we
study the system of partial differential equations

iε∂tψ = Hψ, (1.1)

with ψ ∈ L2(R,C2), and

H = − ε22 ∂2xI + V (x).

Above, I is the 2× 2 unit matrix, and, with σx and σz the Pauli matrices as defined in (3.2),

V (x) = X(x)σx + Z(x)σz + d(x)I =

(
Z(x) X(x)
X(x) −Z(x)

)
+ d(x)I

is the real-symmetric potential energy matrix in the diabatic representation. Units are such that
~ = 1 and the electron mass mel = 1. ε2 is the ratio of electron and reduced nuclear mass,
typically of the order 10−4. The timescale is such that the nuclei (with position coordinate x)
move a distance of order one within a time of order one. The motivation of (1.1) and its relevance
for photodissociation is discussed further in [3].
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There is a natural coordinate transformation of (1.1) that exploits the scale separation provided
by the small parameter ε. The corresponding representation is called the adiabatic representation,
and is given as follows: Let U0(x) diagonalize V (x) for each x, and define ψ0(x) = (U0ψ)(x) ≡
ψ(U0(x)). Then ψ0 solves

iε∂tψ0 = H0ψ0, (1.2)

with H0 given to leading order by

H0 = −ε
2

2
∂2xI +

(
ρ(x) + d(x) −εκ1(x)(ε∂x)
εκ1(x)(ε∂x) −ρ(x) + d(x)

)
. (1.3)

Here, ρ =
√
X2 + Z2 is half the energy level separation, and

κ1 =
Z ′X −X ′Z
Z2 +X2

is the adiabatic coupling element. A consequence of the choice of time scale in (1.2) is that solutions
will oscillate with frequency 1/ε. Thus the operator ε∂x is actually of order one. However, we
have still achieved a decoupling of the two energy levels in (1.3), up to errors of order ε, as long as
X2(x) +Z2(x) > 0. Generically, this inequality is always true: assuming that the entries of V are
analytic in the nuclear coordinate x, then eigenvalues of V do not cross [18], and so their difference

2
√
X2 + Z2 remains positive. An avoided crossing is a (local or global) minimum of ρ(x), which

results in nonadiabatic transitions between the adiabatic energy levels.
The problem of photodissociation, or more generally of non-radiative decay, can now be formu-

lated mathematically: assume that (1.2) is solved with an initial wave packet ψin ∈ L2(R,C2) that
is fully in the upper adiabatic level (i.e. the second component of ψin is zero). This is the situation
just after the laser pulse brings the electrons to their excited state. Assuming that the initial
momentum is such that the wave packet travels past an avoided crossing, we wish to describe the
second component of ψ0(x, t), to leading order, long after the avoided crossing has been passed.
By doing this, we predict not only the probability of a molecule dissociating, but also the quantum
mechanical properties (momentum and position distribution) of the resulting wave packet.

The difficulty in solving the above problem is that the resulting wave packets are typically
very small, namely exponentially small in ε. As an example, let us assume that the initial wave
packet ψin has L2-norm of order one, and that the parameters are such that the L2-norm of the
transmitted wave function is expected to be of order 10−6, which we will later see is a fairly typical
value. This means that any straightforward numerical method with an overall error of more than
10−6 will produce meaningless results, and thus if we were to apply a standard method (like Strang
splitting) on the full equation (1.2), we would have to use ridiculously small time steps. To make
things worse, the solution is highly oscillatory. Thus, even though (1.2) is a system of just 1 + 1
dimensional PDE’s, it is not at all trivial to solve numerically. Efficient numerical methods to solve
(1.2) will therefore require insight into the analytical structure of the equation.

In [1], we used superadiabatic representations in order to obtain such insight. We derive a
closed-form approximation to the transmitted wavefunction at the transition point, which is highly
accurate for general potential surfaces and initial wavepackets whenever d(x), the trace of the
potential, is small, but deteriorates when d(x) is moderate or large at the transition point. In
general, it can not be taken for granted in real world problems that d(x) is small. Therefore, in
this paper we treat a potential with an arbitrary trace. Our result is weaker than the one in [1].
While in the latter paper, we could allow arbitrary incoming wave functions as long as they were
semiclassical, we essentially require the incoming wave packet to be either Gaussian or a generalized
Hagedorn wave packet in the present work. However, in that case we still obtain a closed form
expression for the transmitted wave function at the transition point, and the accuracy is as good
as in [1].
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The importance on nonadiabatic transitions has resulted in much effort to understand them. A
simplification of the problem is to replace the nuclear degree of freedom by a classical trajectory.
This approach is both long-established [20] and well-understood [4, 7, 5] and leads to the well-known
Landau-Zener formula for the transition probability between the electronic levels. This formula
underpins a range of surface hopping models [17, 10, 9]. Although these and other trajectory-
based methods [16] yield reasonably accurate transition probabilities, they are unable to accurately
predict the shape of the transmitted wave packet [9]. An improvement to the Landau-Zener rates
is achieved by Zhu-Nakamura theory [12], which is based on the full quantum scattering theory of
the problem. However, once again only the transition probabilities are treated, and not the wave
packet itself.

It is worth noting that, due to the complexity of the full quantum-mechanical problem of tran-
sitions at avoided crossings, there are few existing mathematical approaches. The most relevant
approach to this work is that of [8] where another formula is given (and proved) for the asymp-
totic shape of a non-adiabatic wavefunction in the scattering regime at an avoided crossing. For
simplicity we do not state it here, see Theorem 5.1 of [8]. For comparison, their result looks very
different to ours, and it is expected that they will not agree in the limit of small ε as theirs is
asymptotically correct, whereas we have aimed for a simple formula which works well for a wide
range of physically relevant parameters. Nevertheless, our approach is much better suited for prac-
tical purposes than the formula of [8], which requires one to calculate complex contour integrals of
the analytic continuation of some function V that is defined only implicitly.

2. Computing the non-adiabatic transitions

In this section we will give a concise overview of our method for computing non-adiabatic
transition wavefunctions, and explain the various parameters entering the final formula. The
justification of our method, some extensions and a numerical test will be given in the remainder
of the paper.

The data of our problem consists of two parts, the potential energy matrix V and the initial
wave function. More precisely, we assume that we are given ρ(x) and d(x) as in (1.3), and that
ρ has a unique global minimum in the region of space that we are interested in. We choose the
coordinate system such that this minimum occurs at x = 0, and we thus have

ρ(x) = δ +O(x2), d(x) = d0 + λx+O(x2).

The transmitted wavefunction only depends on on λ and ρ, but unfortunately the latter quantity
does not enter in a simple way. Under the reasonable assumption that the matrix elements X and
Z are analytic functions of x at least close to the real axis, then so is ρ2. We write ρ(q)2 = δ2+g(q)2

where g is analytic and g(0) = 0. Since g2 is quadratic at 0, a Stokes line (a curve with Im(ρ) = 0)
crosses the real axis perpendicularly, and, for small δ, extends into the complex plane to two
complex zeros of ρ, namely qδ and q∗δ . We define, for any complex z, the ‘natural scale’ [4]

τ(z) = 2

∫ z

0

ρ(ξ) dξ,

and write τδ = τ(qδ), where qδ by convention is the complex zero with positive imaginary part.
We write

τr = Re (τδ), τc = Im (τδ),

which are the two parameters that enter into the transition formula. When we are given ρ in a
functional form, neither the computation of its complex zeroes not of the complex line integral
leading to τδ is a problem numerically, and can be carried out to any required accuracy. How-
ever, in the case of radiationless transitions, the potential energy surfaces are often known only
approximately. As our final formula will depend very sensitively on the value of τδ, small errors
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in this quantity will lead to wrong predictions. This is not a fault of our method, but a general
obstruction to any numerical method aiming to calculate small nonadiabatic transitions: namely,
since our formula below agrees very accurately with ab-initio computations, and depends very
sensitively on τδ, getting ρ wrong will lead to wrong results regardless of the method used. In a
way, it should not be too surprising that when looking for a very small effect, we need to get the
data right with very high accuracy. But it does pose a serious practical challenge when trying to
predict small nonadiabatic transitions.

As for the initial wavefunction, first of all we assume it to be initially concentrated in the upper
electronic energy band. This means that we will consider equation (1.2) with initial condition
ψ0(x, 0) = (φ+(x, 0), 0)T . The restriction of this work, when compared to the case with λ = 0
considered in [1], is on the form of φ+(x, 0), which we require to be either Gaussian, or a finite linear
combination of Gaussians, or a Hagedorn wavefunction. For the present exposition, we restrict to
the case where it is Gaussian. The first step of our algorithm is straighforward:

Step 1: Solve the upper band adiabatic equation iε∂tψ+ = H+ψ+, ψ+(0) = φ+(·, 0), where
H+ = −ε2∂2x/2 + ρ(x) + d(x). This can be done either by direct Strang splitting, or using the
theory of Hagedorn wave packets [11]. For a transition to occur, we need the wave packet to cross
the transition region near x = 0, where ρ is minimal. So we monitor the expected position 〈X〉 =∫
x|ψ+(x)|2 dx and stop the evolution when 〈X〉 = 0, say at time t0. Let us write φ(x) = ψ+(x, t0).

φ is Gaussian up to errors of order ε [11], and centered at x = 0. Thus we have

φ̂ε(k) = exp
(
− c
ε

(k − p0)2
)

(2.1)

with parameters p0 (the mean momentum) and c. Above, we used the semiclassical Fourier trans-
form, cf. (3.8).

Given these initial data, we need to define one further derived quantity. Put n0 = τc
εk0

, where
k0 is part of the solution of the pair of equations

k =
√
η2 + 4δ, η = k

(
1− 4cδ(η−p0)

τc

)
. (2.2)

Again, the numerical value of n0 is easy to obtain. In what follows, we will use the abbreviation

η∗ = η∗(k) =
√
k2 − 4δ.

Step 2 Put

φ̂−
ε
(k) ≈ 1

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) e−iϕ(p0) φ̂ε(η∗)χk2>4δ,

(2.3)

with

α1,0 =
sgn(k)τc + iτr − η∗n0ε− 4cδ(η∗ − p0)

2δ
√
ε

+

√
ε

k + η∗
,

α0,1 = −2(n0 + 1)ε1/2λ

k + η∗
, α1,1 = −iη∗ +

2(n0 + 1)λε

(k + η∗)2
, (2.4)

α2.0 = −2δn0ε+ η∗2

8δ2
− c− ε

2(k + η∗)2
, α0,2 = −i

2δλ

(k + η∗)
− 2(n0 + 1)λ2ε

(k + η∗)2
,

and

ϕ(p0) = − (n0 + 1)2ελa0δ

2(n0 + 1)2λ2ε2 + 2δ2a20
− 1

2
arctan

( a0δ

(n0 + 1)ελ

)
+ sgn(λp0)

π

4
,
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where above a0 =
√
p20 + 4δ + p0. While formula (2.3) is trival to implement on a computer and

produces accurate results, it would of course be desirable to interpret the various terms in a phys-
ically meaningful way. However, we have been unable to do this. On the other hand, everything
except the factor e−iϕ(p0) is obtained by approximations and exact Gaussian computations. The
latter factor is more tricky. We include it because we found a discrepancy in the phase of the
transmitted wave function between our formula without the factor and numerical ab-initio calcu-
lations, which is probably due to one of our approximations below being too crude. This phase
discrepancy is removed by essentially computing the phase in the case of an incoming Gaussian
when the parameter c diverges, i.e. infinitely small momentum uncertainty, which gives ϕ(p0), and
subtracting that. While this fixes the discrepancy with the numerics, we do not, as yet, fully
understand why it does so, and where the original inaccurate approximation has been made.

One important property of ϕ(p0) is that it is constant in both k and x and hence will not
affect any quantum mechanical expectation values. It would however play a role when we consider
interferences.

The final step of our algorithm is again straightforward:
Step 3 Solve the lower band adiabatic equation with initial condition φ−, i.e. solve

iε∂tψ− = H−ψ−, ψ−(t0) = φ(·, t0),

where H− = −ε2∂2x/2 − ρ(x) + d(x), and φ− is the inverse semiclassical Fourier transform of

φ̂ε−. For times so large that ψ− has support far away from the transition region, it describes the
transmitted wave function of equation (1.2) with great accuracy, see section 6.

3. Evolution in the Superadiabatic Representations

3.1. Superadiabatic Representations. The key idea for deriving our transition formulae is
to study the evolution in a suitable superadiabatic representation. For a careful discussion of
the theory of those representation, we refer to [3]. Here we give only some intuition and the
mathematical facts. The n-th superadiabatic representation is implemented by a unitary operator
Un acting on L2(R,C2), and its main property is that it diagonalizes the right hand side of (1.1)
up to errors of order εn+1. Thus, the adiabatic representation (1.3) is the zeroth superadiabatic
representation, and in general

Hn = U−1n HUn = −ε
2

2
∂2xI +

(
ρ(x) + d(x) εn+1K+

n+1

εn+1K−n+1 −ρ(x) + d(x)

)
,

where K±n are the n-th superadiabatic coupling elements. They are usually pseudo-differential
operators, and so are the Un. The useful consequence of switching to the superadiabatic represen-
tation is that now the evolution of the second component ψ−n of ψn = Unψ, subject to ψ−n (−∞) = 0,
is given by

ψ−n (t) = −iεn
∫ t

−∞
e−

i
ε (t−s)H−

K−n+1 e−
i
ε sH

+

φds, (3.1)

up to relative errors of order ε. Thus, provided we can control K−n , (3.1) gives the transmitted
wave function in the n-th superadiabatic representation to high precision.

There are some apparent problems with this idea. Firstly, it is far from clear how we hope to
control K−n . Secondly, the superadiabatic unitaries are in general very hard to calcualte, and as
such this formulation does not allow the adiabatic wavefunction to be easily obtained. Thirdly, we
have to decide which value of n we want to use. The sequence K−n is expected to be asymptotic
in n, so after initially decaying rapidly (in an appropriate sense) it will start to grow beyond all
limits when n is taken to infinity. The second problem is resolved when we study the wavefunction
in the scattering regime, well away from the avoided crossing. In this case, for potentials which
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are approximately constant, it is known that Un and U0 agree up to small errors depending on the
derivatives of the potential [15], and (3.1) can be used to calculate the transmitted wavefunction.
For the value of n, in [3] we showed for a special choice of parameters ρ, κ that there exists an
‘optimal’ n for which ψ−n (t) builds up monotonically, corresponding to a single transition. This
n is given by the set of nonlinear equations (2.2) that we have seen in the previous section. We
expect this set of equations to hold in general, and have obtained very good results by using it
here.

The problem of calculating K−n turns out to be reducible to a set of differential recursions, which
we will now give. The discussion follows the one in [3] very closely, the only difference being that
we now include a nonzero trace d(x) in the Hamiltonian. All the calculations and arguments are
almost the same as in [3], so we will omit them.

We change from the spatial representation to the symbolic representation (see e.g. [15]) by
replacing x by q ∈ R and iε∂x by an independent variable p ∈ R, where the factor ε takes into
account the semiclassical scaling. We need to introduce some further notation: we rewrite the
potential as

V (q) = ρ(q)

(
cos
(
θ(q)

)
sin
(
θ(q)

)

sin
(
θ(q)

)
cos
(
θ(q)

)
)

+ d(q)

(
1 0
0 1

)
,

which defines θ(q). It follows that the unitary transformation to the adiabatic representation is
given by

U0(q) =

(
cos
( θ(q)

2

)
sin
( θ(q)

2

)

sin
( θ(q)

2

)
− cos

( θ(q)
2

)
)
.

Hence the Pauli matrices in the adiabatic representation are given by

σx(q) = U0(q)σxU0(q), σy(q) = U0(q)σyU0(q), σz(q) = U0(q)σzU0(q),

where

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, (3.2)

and we have used that U∗0 = U0.
A direct calculation confirms, with 1 the 2× 2 identity matrix:

Lemma 3.1. We have

∂nq V (q) = an(q)σz(q) + bn(q)σx(q) + cn(q)1,

where an(q), bn(q) and cn(q) are given by the recursions

a0(q) = ρ(q), an+1(q) = a′n(q) + θ′(q)bn(q)

b0(q) = 0, bn+1(q) = b′n(q)− θ′(q)an(q)

c0(q) = d(q) cn+1(q) = c′n(q)

(3.3)

We then have the following explicit recursion for the coupling elements:

Theorem 3.2. The Hamiltonian in the n-th superadiabatic representation is given by

Hn(ε, p, q) =
p2

2
1 +

(
ρ(q) + d(q) εn+1κ+n+1(p, q)

εn+1κ−n+1(p, q) −ρ(q) + d(q)

)
+

(
O(ε2) O(εn+2)
O(εn+2) O(ε2)

)
,

where

κ±n+1(p, q) = −2ρ(q)(xn+1(p, q)± yn+1(p, q)).
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Setting xn(p, q) =
∑n
m=0 p

n−mxmn (q) with similar expressions for yn, zn and wn, the coefficients
xmn to wmn are determined by the following recursive algebraic-differential equations:

xm1 = zm1 = wm1 = 0, m = 0, 1, y01 = −i
θ′(q)
4ρ(q)

, y11 = 0 (3.4)

with

xmn+1 = − 1

2ρ


1

i
(ymn )′ − 2

bm/2c∑

j=1

1

(2i)j
(
n+1−m+j

j

)
(bjz

m−2j
n+1−j − ajxm−2jn+1−j + cjy

m−2j
n+1−j)




for n odd, and

ymn+1 =− 1

2ρ


1

i

(
(xmn )′ − θ′zmn

)
− 2

bm/2c∑

j=1

1

(2i)j
(
n+1−m+j

j

)
(−ajym−2jn+1−j + bjw

m−2j
n+1−j + cjx

m−2j
n+1−j)


 ,

0 =
1

i

(
(zmn )′ + θ′xmn

)
− 2

bm/2c∑

j=1

1

(2i)j
(
n+1−m+j

j

)
(bjy

m−2j
n+1−j + ajw

m−2j
n+1−j + cjz

m−2j
n+1−j),

0 =
1

i
(wmn )′ − 2

bm/2c∑

j=1

1

(2i)j
(
n+1−m+j

j

)
(ajz

m−2j
n+1−j + bjx

m−2j
n+1−j + cjw

m−2j
n+1−j),

for n even. The coefficients an to cn are given by Lemma 3.1

Proof. The proof is analogous to those of Theorem 3.4 and Proposition 3.5, with some easy alter-
ations due to the presence of d(x). �

We note that, as in the trace-free case in [3], ymn = 0 for all m when n is even and xmn =
zmn = wmn = 0 for all m when n is odd. Furthermore, from the above equations, it is obvious that
xmn = ymn = zmn = wmn = 0 for odd m.

We now have an explicit expression for κ−n and may therefore also calculate K−n , the superadi-
abatic coupling element, which is the Weyl quantization of the symbol κ−n :

K±n ψ(x) =
1

2πε

∫

R2

dξ dy κ±n
(
x+y
2 , ξ

)
e

i
ε ξ(x−y) ψ(y),

and from the recursions in Theorem 3.2, it is clear that

κn(p, q) =

n∑

j=0

pjκn,n−j(q),

where the κn,n−j can be calculated explicitly. Determining the asymptotics of this two-parameter
recursion is a very tricky problem to which we have no solution. However, in the regime of large
p (meaning, large incoming momentum) the sum is well- approximated by the j = n term. For
p = O(ε−1/3), this can be made rigorous on the level of the superadiabatic Hamiltonian, while a
full asymptotic investigation of the transitions in this regime is still work in progress [2]. Here, we
use this approximation without further justification, and find that it gives good results even for
relatively small values of p.

The asymptotics of the term κ−n,0 can be determined explicitly in the following generic case.
Without loss of generality, we assume that the avoided crossing occurs at x = 0, specify the initial
wave packet at t = 0, and write ρ(q)2 = δ2 + g(q)2 where g is analytic and g(0) = 0. As is
standard in asymptotic analysis (see e.g. [4]), the asymptotic behaviour of κ−n,0 is determined by

the complex zeros of ρ. Since g2 is quadratic at 0, a Stokes line (a curve with Im(ρ) = 0) crosses the
real axis perpendicularly, and, for small δ, extends into the complex plane to two complex zeros of
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ρ, namely qδ and q∗δ . As argued by Berry and Lim, in the natural scale τ(q) = 2
∫ q
0
ρ(q)dq and near

q = 0, the adiabatic coupling function has the form κ1(q) = iρ(q)
3

(
1

τ(q)−τ∗
δ
− 1

τ(q)−τδ + κr(τ(q))
)
,

with τδ = τ(qδ). In particular, κr has no singularities fro |τ | < |τδ|, and no singularities of order
> 1 for |τ | 6 |τδ|. As can be seen from Theorem 3.2, solving the recursions for κ−n requires taking
high derivatives of κ1. By the Darboux principle, the asymptotics are dominated by the complex
singularities closest to the real axis, τδ and τ∗δ . Hence, to leading order, we find

κ−n,0(q) = in

π ρ(q)(n− 1)!
(

i
(τ−τ∗

δ )
n − i

(τ−τδ)n
)
. (3.5)

Using the definition of the Weyl quantisation, a direct calculation [3] shows

K−n,0 =

n∑

j=0

(
n

j

)(
ε
2i

)j(
∂jxκ

−
n,0(x)

)
(−iε∂x)n−j . (3.6)

3.2. Approximation of the Adiabatic Propagators. In order to determine a closed form
approximation for (3.1), it is necessary to approximate the adiabatic propagators. This is in
contrast to the situation in [3] where the model was chosen such that ρ is constant, and thus the
adiabatic evolutions were trivial in Fourier space.

The first insight is that the operator K−n,0 given in (3.6) is sharply localized: K−n,0f will only be
significantly different from zero if either f or some of its derivatives have some support overlap with
κ−n,0, which means they must be concentrated near the real solution of Re (τ(q)) = Re (τδ) that is
closest to q = 0. We will refer to this solution as the transition point. In Section 4.1 we will see that

relevant values of n are of the order 1/ε; furthermore, for large n we have (1+x2)−n ≈ e−nx
2

, and
so κ−n,0 and its derivatives are concentrated in a

√
ε neigbourhood of the transition point. Since the

time scale is chosen such that the semiclassical wave packets (which have width of order
√
ε) travel

at speed of order one, the dominant transitions come from a time interval of order
√
ε around the

transition time, which we define to be the time when the expected position of the incoming wave
packet crosses the transition point.

Let us pick a coordinate system so that that the transition time is s = 0. We cannot, however,
choose the transition point to be at x = 0, since we have already fixed x = 0 to be the local minimum
of ρ. On the other hand, one of our later calculations relies on the fact that the transition point
is at least in a

√
ε neighbourhood of 0, see Section 3.3. So from now on, we will always assume

that the transition point does indeed have this property. This assumption can be justified by the
observation that for sensible potentials, the real and imaginary parts of the complex zeroes of ρ are
coupled, and are either both relatively small or both large. However, in the latter case, transitions
tend to be so small that they are physically uninteresting. That said, it would of course be much
preferable to be able to treat arbitrary transitions, but we cannot do this yet. In what follows,
we will always pretend that the transition point is x = 0, although for the calculation in the next
paragraph below this is not yet strictly necessary.

The above considerations allow us to replace the potential in the full adiabatic dynamics by its
first Taylor approximation, as the following formal calculation shows. We take H±1 := −ε2∂2x/2±
δ + λx and wish to show that e−

i
ε sH

± − e−
i
ε sH

±
1 is small. We have

e−
i
ε sH

± − e−
i
ε sH

±
1 = e−

i
ε sH

±
1
(

e
i
ε sH

±
1 e−

i
ε sH

± − 1
)

= e−
i
ε sH

±
1

∫ s

0

∂r
(

e
i
ε sH

±
1 e−

i
ε sH

± )
dr

= e−
i
ε sH

±
1

∫ s

0

e
i
ε sH

±
1
(
i
ε (H±1 −H±)

)
e−

i
ε sH

±
dr.

We now note that H±1 −H± is quadratic near x = 0 and hence the integrand is of order 1 in a
√
ε

neigbourhood of zero. Hence the left hand side is bounded by the length of the integration region
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√
ε and, to leading order, it suffices to replace (3.1) by

ψ−n (t) ≈ −iεn e−
i
ε tH

−
∫ t

−∞
e

i
ε s(−ε2∂2

x/2−δ+λx)K−n+1 e−
i
ε s(−ε2∂2

x/2+δ+λx) φ ds, (3.7)

where we have not altered the s-independent propagator.
We now find it convenient to switch to the Fourier representation by applying the semiclassical

Fourier transform

f̂ε(k) =
1√
2πε

∫

R
e−

i
εkq f(q) dq =

1√
ε
f̂
(
k
ε

)
. (3.8)

We define K̂n through K̂nψ̂
ε = K̂nψ

ε
, and a direct calculation [3] gives

K̂±n,0f(k) =
1√
2πε

∫

R
dη κ̂±n,0

ε

(k − η)
(
η+k
2

)n
f(η).

Fourier transforming both sides of (3.7), we see that ψ̂−n
ε

is given by a double integral:

ψ̂−n
ε

(k, t) ≈ − iεn√
2πε

e−
i
ε tĤ

−(k)

∫ t

−∞
ds

∫

R
dη e

i
ε sĤ

−
1 (k) κ̂−n+1,0

ε

(k − η)
(
η+k
2

)n+1

e−
i
ε sĤ

+
1 (η) φ̂ε(η),

where Ĥ±1 (Ĥ±) are the approximate (exact) adiabatic propagators in momentum space.
By the Avron-Herbst formula, the approximate propagators are given exactly by

e−
i
ε sĤ

±
1 (k) = e−i

λ2s3

6ε eλs∂k e−
i
2ε ((k

2±2δ)s−λks2) .

In particular, we have

e
i
ε sĤ

−
1 (k) = e

iλ2s3

6ε e−λs∂k e
i
2ε (k

2−2δ)s e
i
2ελks

2

(3.9)

e−
i
ε sĤ

+
1 (η) = e−

iλ2s3

6ε eλs∂η e−
i
2ε (η

2−2δ)s e
i
2εληs

2

.

In order to make use of these expressions we must understand the effects of the shift operators,
where eλs∂k f(k) = f(k+λs). Using (3.9) in (3.7) we note that, due to the invariance of the integral

under η 7→ η − λs, we may apply the η shift to the left with opposite sign. Hence κ̂−n+1,0

ε

(k − η)

is unaffected and (k + η)n+1 7→ (k + η − 2λs)n+1.
Shifting the remaining propagator in k by −λs, the remaining multiplicative parts of the prop-

agators are given by

exp
[

i
2ε

(
[(k − λs)2 − 2δ]s+ λ(k − λs)s2 − (η2 + 2δ)s+ ληs2

)]
.

Simplifying this expression and inserting it into (3.7) gives

ψ̂−n
ε

(k, t) ≈ − iεn√
2πε

e−
i
ε tĤ

−
1 (k)

∫ t

−∞
ds

∫

R
dη (k + η − 2λs)n+1κ̂−n+1,0

ε

(k − η)

× e
i
2ε

(
(k2−η2−4δ)s−(k−η)λs2

)
φ̂ε(η). (3.10)

3.3. Fourier transform of the coupling elements. In order to make use of (3.10), we require
the Fourier transform of κ−n,0. Using (3.8) on (3.5) gives

κ̂−n,0
ε

(k) =
1√
2πε

∫
e−

i
εkq

in+1

π
ρ(q)(n− 1)!

[ 1(
τ(q)− τ∗δ

)n −
1(

τ(q)− τδ
)n
]
dq

=
1√
2πε

∫
e−

i
εkq(τ)

in+1

2π
(n− 1)!

[ 1(
τ − τ∗δ

)n −
1(

τ − τδ
)n
]
dτ,

where we have used dτ = 2ρ(q)dq.
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It is now that we need the transition point to be at or near q = 0. Provided this is so, we can
use that ρ has a minimum δ at q = 0, and expand q(τ) = τ

2δ +O(τ3). Note that no second order
term is present. As the remainder of the integrand is concentrated in a

√
ε neighbourhood around

q = 0, we keep only the first order term, giving

κ̂−n,0
ε

(k) ≈ 1√
2πε

∫
e−

i
2δε kτ

in+1

2π
(n− 1)!

[ 1(
τ − τ∗δ

)n −
1(

τ − τδ
)n
]
dτ.

We now note that 1
(τ−α)n = (−1)n−1 1

(n−1)!∂
n−1
τ

1
τ−α and hence

κ̂−n,0
ε

(k) ≈ 1√
2πε

in+1

2π
(−1)n−1

∫
e−

i
2δε kτ ∂n−1τ

[ 1(
τ − τ∗δ

) − 1(
τ − τδ

)
]
dτ

=
1√
2πε

in+1

2π
(−1)n−1

∫
e−

i
2δε kτ ∂n−1τ

[ −2iτc(
(τ − τr) + τ2c

)
]
dτ.

Using the identities f̂ε(k) = 1√
ε
f̂
(
k
ε

)
, ∂̂nτ f(k) = (ik)nf̂(k), ̂f(x− a)(k) = e−iak f̂(k) and the

standard Fourier transform
â

x2+a2 (k) =
√

π
2 e−a|k|

gives

κ̂−n,0
ε

(k) ≈ i

√
2δ√
πε

1

(2δ)n

(k
ε

)n−1
e−

τc
2δε |k| e−i

τr
2δε k ,

where we have used τδ = τr + iτc. Inserting this formulation into (3.10) gives

ψ̂−n
ε

(k, t) ≈ − 1

4πε
e−

i
ε tĤ

−(k)

∫ t

−∞
ds

∫

R
dη (k + η)(1− 2λs

k+η )n+1
(
k2−η2

4δ

)n

× e−
τc
2δε |k−η| e−

iτr
2δε (k−η) e

i
2ε

(
(k2−η2−4δ)s−(k−η)λs2

)
φ̂ε(η). (3.11)

4. Evaluation of the integral

4.1. The choice of n. Equation (3.11) still depends on the parameter n, the order of the supera-
diabatic representation. For choosing n, we attempt to use the same argument that was employed
in [3] in order to obtain universal transition histories. The idea then and now is that the modulus
of the integrand in (3.11) depends on n, while the phase does not. We will thus try to choose n
such that stationary phase and maximal modulus occur at the same point, making it possible to
perform asymptotic analysis on the integral.

We recall the assumption that τr is small, and consider the imaginary part of the exponent.
Indeed, we will set τr = 0 in what follows. This simplifies the analysis and does not seem to greatly
affect the accuracy of the final result. Differentiating the phase of (3.11) with respect to s and η
gives

(k2 − η2 − 4δ)− 2λ(k − η)s = 0 (4.1)

−2ηs− λs2 = 0. (4.2)

Note that if λ = 0 then there is only one solution, namely k2 − η2 = 4δ and s = 0; this remains a
solution if λ 6= 0.

For a simultaneous solution to (4.1) and (4.2) (i.e. stationary phase for both integrals) we require
either s = 0 and k2−η2−4δ = 0, or λs = −2η and η the solution to −5η2+4kη+k2−4δ = 0. In the
second case, for k = O(1), we see that η and hence s are also of order 1. We have already discussed
that we expect the significant transitions to occur only when s = O(ε1/2), and we therefore expect
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this solution to contribute only a negligible amount to the transmitted wave packet. So from the
stationary phase condition, we obtain s = 0 and k2 − η2 − 4δ = 0.

For the modulus, we assume the case of a Gaussian wave packet of the form (2.1). Differentiating
the logarithm of the modulus with respect to η and s and equating to zero leads to the equations

(n+ 1)
2λ

η + k − 2s
= 0, (4.3)

2c(η − p0)− τc
2δ
η + nε

2η

k2 − η2 − (n+ 1)ε
2λs

(k + η)(k + η − 2λs)
= 0. (4.4)

Equations (4.1)–(4.4) cannot be solved simultaneously, which shows an interesting difference of the
present case when compared to the non-tilted case treated in [1] and [3]. To make progress, we
argue that the choice of the optimal superadiabatic representation should depend only weakly on
the trace λ of the potential. Therefore, we allow λ to vary as well as n, η and s, and obtain the
joint solution s = λ = 0, and n and η fulfilling n = τc

εk0
with k0 the solution of (2.2). We will in

future always use this value of n, denoted n0.

4.2. Rescaling. Recall that the wavepacket moves a distance of order 1 in time of order 1, and,
for a semiclassical wavepacket, is of width of order ε1/2. Hence for times of order εγ with γ < 1/2,
in position space, the wavefunction is localised well away from the transition region. It follows
that there should be little contribution to the integral outside s ∈ [−εγ , εγ ] for γ < 1/2. We thus
restrict the s-integral to this region.

We rewrite (3.11) as 1
4πε exp(− i

ε tĤ
−(k))

∫
R dη

∫ εγ
−εγ ds g(k, η, s) with

g(η, k, s) = exp
[
n log

(
k2−η2

4δ

)
+ log(k + η) + (n+ 1) log

(
1− 2λs

k+η

)
− τc

2δε |k − η|

− i τr2δε (k − η) + i
2ε

[
(k2 − η2 − 4δ)s− λ(k − η)s2

]]
φ̂ε(η).

We now note that, in order for the phase of the integrand to be stationary in s, we expect η ≈
η∗ = ±

√
k2 − 4δ. For a semiclassical wave packet which has sufficient momentum to move past

the avoided crossing, the choice of sign will correspond to the sign of the mean momentum of φ̂ε.
For this choice of η∗ to make sense, it is clear that we require k2 − 4δ > 0, and so introduce the
cutoff function χk2>4δ. The physical meaning of this cutoff is clear when one considers η to be
the incoming momentum and k the outgoing momentum: since the potential gap is 2δ, by energy
conservation we have k2/2 = η2/2 + 2δ, and since we require η2 > 0 for the wave packet to move
past the crossing we have k2 > 4δ.

We now set η = η̃ε1/2 + η∗, where η̃ is of order 1 and rescale the s integral by s = s̃ε1/2, which
causes the domain of the s̃ integral to be at least of order 1, and tend to the whole of R as ε→ 0.

Using
∫
R dη

∫ εγ
−εγ ds g(k, η, s) = ε

∫
R dη̃

∫ εγ−1/2

−εγ−1/2 ds̃ g(k, ε1/2η̃ + η∗, ε1/2s̃), and removing the tildes
from now on, we are interested in

g(ηε1/2 + η∗, k, ε1/2s) = exp
[
n log

(
1− η2ε+2ηη∗ε1/2

4δ

)
+ log(k + η∗ + ηε1/2)

+ (n+ 1) log
(
1− 2λsε1/2

k+η∗+ηε1/2

)
− τc

2δε |k − η∗ − ηε1/2| − i τr2δε (k − η∗ − ηε1/2)

+ i
2ε

[
(−η2ε− 2ηη∗ε1/2)sε1/2 − λ(k − η∗ − ηε1/2)s2ε

]]
φ̂ε(ε1/2η + η∗). (4.5)

We now discuss the evaluation of these two integrals.

4.3. The s integral. Since the wave function φ̂ε is independent of s, we now aim to perform the
s-integration explicitly. We now consider the regime where ε is small and k is of order 1. This is

necessary as we wish to expand the logarithm term in powers of s, and require that 2λsε1/2

k+η∗+ηε1/2
� 1.
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This holds since, from the limits of integration, we see that at worst sε1/2 ∼ εγ with γ > 0 and
η∗ ∼ k ∼ η ∼ 1. Expanding to second order gives

log
(
1− 2λsε1/2

k+η∗+ηε1/2

)
≈ − 2λsε1/2

k+η∗+ηε1/2
− 2λ2s2ε

(k+η∗+ηε1/2)2
. (4.6)

In the small-ε limit, εγ−1/2 →∞, which, combined with the above expansion reduces the s-integral
to a Gaussian integral of the form

∫

R
exp(αs2 + βs)ds =

√
−π
α

exp
(
−β

2

4α

)
, for Re (α) < 0.

In this case, we have

α = − 2(n+1)λ2ε
(k+η∗+ε1/2η)2

− iλ
2 (k − η∗) + iε1/2λ

2 η

(where Re (α) < 0) and

β = − 2λ(n+1)ε1/2

k+η∗+ε1/2η
− iη∗η − iε1/2

2 η2.

It therefore remains to calculate the integral over η:

ψ̂−n
ε

(k, t) =
χk2>4δ

4
√
πε

e−
i
ε tĤ

−(k)

∫

R
dη φ̂ε(ε1/2η + η∗)

(
2(n+1)λ2ε

(k+η∗+ε1/2η)2
+ iλ

2 (k − η∗)− iε1/2λ
2 η

)−1/2

× exp
[
n log

(
1− η2ε+2ηη∗ε1/2

4δ

)
+ log(k + η∗ + ηε1/2)− τc

2δε |k − η∗ − ηε1/2| − i τr2δε (k − η∗ − ηε1/2)
]

× exp
[
−
(
− 2λ(n+1)ε1/2

k+η∗+ε1/2η
− iη∗η − iε1/2

2 η2
)2(
− 2(n+1)λ2ε

(k+η∗+ε1/2η)2
− iλ

2 (k − η∗) + iε1/2λ
2 η

)−1]
.

For a general φ̂ε, we can say little else, and the integral must be computed numerically. However,

in the important case where φ̂ε is a Gaussian, we can derive a closed-form approximation, which
is in excellent agreement with the full dynamics. The main idea is to approximate the integrand
in (3.11) in such a way as to produce a Gaussian integral. The first hinderance to this comes from
the log terms, which we now consider.

4.4. Expansion of log terms. Along with the expansion in (4.6), we have

log(k + η∗ + ηε1/2) = log(k + η∗) + log
(
1 + ηε1/2

k+η∗

)
≈ log(k + η∗) + ηε1/2

k+η∗ −
η2ε

2(k+η∗)2 ,

log
(
1− η2ε+2ηη∗ε1/2

4δ

)
≈ −η2ε+2ηη∗ε1/2

4δ − 1
32δ2 (η4ε2 + 4η3η∗ε3/2 + 4η2η∗2ε),

where we have once again used that k, η∗, η ∼ 1.
In order to produce a Gaussian integral, it is necessary to make a number of justifiable approx-

imations. Expanding (k + η∗ + ε1/2η)−p, p = 1, 2 in (4.6) around ηε1/2 = 0 and neglecting terms
of order larger than ε in all three logarithm expansions reduces them to:

log
(
1− 2λsε1/2

k+η∗+ηε1/2

)
≈ − 2λsε1/2

k+η∗ + 2λsεη
(k+η∗)2 − 2λ2s2ε

(k+η∗)2 ,

log(k + η∗ + ηε1/2) ≈ log(k + η∗) + ηε1/2

k+η∗ −
η2ε

2(k+η∗)2 , (4.7)

log
(
1− η2ε+2ηη∗ε1/2

4δ

)
≈ −η2ε+2ηη∗ε1/2

4δ − η2η∗2ε
8δ2 .

Note that all three expansions now contain terms of at most order two in s and η and thus are of
the form required for a Gaussian integral.



BORN-OPPENHEIMER TRANSITIONS 13

4.5. Explicit closed form. One final simplification is necessary to obtain a Gaussian integral:

(4.5) still contains the third order terms, namely iε1/2

2 η2s and iλ
2ε1/2

ηs2. But here we recall that
the staionary phase argument required s = 0, and in the scaled variables also η = 0. This allows
us to remove the above terms: not only are these terms already the highest order in ε, but since
we expect the main contribution to the integral to come from the region around (s, η) = (0, 0), the
effects of these terms is negligible.

Inserting the expansions (4.7) into (4.5), ignoring the third order terms in s and η, and setting

φ̂ε(η) to be the Gaussian φ̂ε(η) = exp(− cε (η − p0)2) gives, for η sufficiently small,

g(k, ηε1/2 + η∗, ε1/2s) = exp(α2,0η
2 + α1,0η + α1,1ηs+ α0,1s+ α0,2s

2),

with the αi,j given in (2.4). Note that the sgn(k) in α1,0 is necessary if we wish to deal with

negative momenta: for k > 0, we have k − η∗ > 0 and hence, for small ε, k − η∗ − ε1/2η > 0.
Therefore |k − η∗ − ε1/2η| = |k − η∗| − ε1/2η. However, for k < 0 we have k − η∗ − ε1/2η < 0 and
|k − η∗ − ε1/2η| = |k − η∗|+ ε1/2η.

Gaussian integration now gives
∫

R

∫

R
dη ds g(k, ηε1/2 + η∗, ε1/2s) =

2π√
4α2,0α0,2 − α2

1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
,

(4.8)

which holds for Re
(α2

1,1

α2,0
− 4α0,2) > 0.

We now check that the above constraint Re
(α2

1,1

α2,0
−4α0,2) > 0 is satisfied for a suitable parameter

regime. For ease of analysis, we note that n0 is approximately given by τc/(ε
√
p20 + 4δ) = O(ε−1).

Taking ε to be small, to leading order we find

α2,0 = −n0ε
4δ −

n0η
∗2ε

8δ2 − c ≈ − τc
4δ
√
p20+4δ

− τcη
∗2

8δ2
√
p20+4δ

− c

α1,1 = −iη∗ + 2n0ελ
(k+η∗)2 ≈ −iη∗ + 2τcλ

(k+η∗)2
√
p20+4δ

α0,2 = −i 2δλ
(k+η∗) −

2(n0+1)λ2ε
(k+η∗)2 ≈ −i 2δλ

(k+η∗) − 2τcλ
2

(k+η∗)2
√
p20+4δ

.

Note that the real part of −4α0,2 is non-negative, so we need only check the sign of Re (α2
1,1/α2,0).

Using α2
1,1 = −η∗2 +

4τ2
c λ

2

(k+η∗)4(p20+4δ)
− i 4τcλη

∗

(k+η∗)2
√
p20+4δ

gives

Re (
α2

1,1

α2,0
− 4α0,2) > 8δ2

(k+η∗)4
√
p20+4δ

[
η∗2(k+η∗)4(p20+4δ)−4τ2

c λ
2

8δ2c
√
p20+4δ+2δτc+τcp20

]
.

Since τc > 0, this is clearly positive when p0 is sufficiently large. Hence the regime of interest is ε
small and p0 large. We then have

ψ̂−n
ε

(k, t) ≈ e−
i
ε tĤ

− 1

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)2 e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) χk2>4δ, (4.9)

with the αi,j as given in (2.4).
We note that setting λ = 0 gives α0,1 = α0,2 = 0 and α1,1 = iη∗, and returns the n-independent

form (see [3])

ψ̂−n
ε

(k, 0) ≈ (η∗+k)
2|η∗| e−

c
ε (η

∗−p0)2 e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) χk2>4δ.
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4.6. Asymptotics of αi,j. We now show that, under suitable assumptions, the αi,j given in (2.4)

may be somewhat simplified. Note that n0 = O(ε−1) and so α2,0 = O(1) and α1,0 = O(ε−1/2).
However, the two terms which come from the n-independent prefactor k + η in (3.11) are of lower
order than the remaining terms in the respective αi,j , and hence, for small εmay safely be neglected.
From the point of view of exponential asymptotics this is completely natural; one would normally
fix the slowly varying terms (i.e. independent of ε, and in this case of n) at the stationary value
of the integrand. For clarity, we now have

α2,0 = −n0ε
4δ −

n0η
∗2ε

8δ2 − c, α1,0 = −n0η
∗ε1/2

2δ − 2c(η∗−p0)
ε1/2

+ sgn(k)τc
2δε1/2

+ i τr
2δε1/2

.

One additional simplification is possible when p0 is large and the wavefunction is quickly decay-
ing (i.e. c is also large). In this case the modulus of the integrand is negligible unless η∗ is close

to p0. For such a range, using n0 ≈ τc/(ε
√
p20 + 4δ), shows that the first three terms in α1,0 above

are all negligible. Further, if the potential is symmetric, τr = 0 and we may use the approximation
α1,0 = 0. In addition, in this limit, and with the assumption that λ is not too large, we see that
the second terms in each of α1,1 and α0,2 in (2.4) are negligible. To conclude, for ε small, p0 and
c large and λ not too large, we have

α2,0 ≈ −
τc(2δ + η∗2)

8δ2η∗
− c, α1,0 ≈

iτr
2δ
√
ε
, α1,1 ≈ −iη∗,

α0,1 ≈ −
2λ√

ε(k + η∗)η∗
, α0,2 ≈ −

i2δλ

(k + η∗)
.

4.7. Additional Phase shift. While testing the formula (4.9) against ab-initio numerics, we
found a discrepancy by a phase shift which, in the region where the wavefunction has significant
magnitude, is constant in k. We believe that this effect comes from one of the approximations
detailed above, but have currently been unable to determine its exact cause. For many applications
this phase shift is unimportant. Since it is constant in k, all expected values of observables are
correctly reproduced by (4.9) in the case of a single Gaussian wave packet. Where the phase shift
begins to matter is for interference phenomena, and when considering a superposition of Gaussians
(see below) such that their centres are at significantly different locations in k; then the phase shift
will not be constant in k any more, and we will get wrong predictions for position expected values.

It is therefore desirable to have a method of removing this effect of the approximations. We
now describe a heuristic method which has proven to be effective for a wide range of potentials
and initial Gaussian wave packets. Consider (4.9) for λ 6= 0 and the wavefunction normalized by a

prefactor
√
c/(πε). Note that if λ = 0 the following argument is invalid. However, setting λ = 0 in

(4.9) we see that the phase depends only on τr, which agrees with that of [1] and the corresponding
numerics.

We are going to consider the phase of the transmitted wave function in the limit c → ∞,
i.e. the incoming wave packet approximating a δ-function at η = p0. Since the numerical phase
shift is independent of k, we need to choose a value of k at which to evaluate this phase. In the
classical picture, from energy conservation we see that the the transmitted wave packet should be
approximately a δ- function at k =

√
p20 + 4δ, and hence we consider this value of k, where the

sign of the square root is chosen to match that of p0.
We are therefore interested in

ψ̂−n
ε

(
√
p20 + 4δ, 0) ≈

√
c√
πε

1

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× a0 e
−τc
2δε |b0| e

−iτr
2δε b0 χk2>4δ,
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where a0 =
√
p20 + 4δ + p0 and b0 =

√
p20 + 4δ − p0. We now investigate the phase of this wave

packet when c → ∞ and note that there are contributions from both the square root and the
exponent.

We write α2,0 = β2,0 − c, and, since η∗ = p0, this is the only term that depends on c. Consider
first the prefactor:

√
c√

4α2,0α0,2 − α2
1,1

=

√
c√

4(β2,0 − c)α0,2 − α2
1,1

=
1√

−4α0,2 + 1
c (4β2,0α0,2 − α2

1,1)

c→∞→ 1√
−4α0,2

. (4.10)

For the exponent, we have

α2,0α
2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

=
(β2,0 − c)α2

0,1 + α0,2α
2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4(β2,0 − c)α0,2

=
−α2

0,1 + 1
c (β2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1)

4α0,2 + 1
c (α2

1,1 − 4β2,0α0,2)

c→∞→ − α2
0,1

4α0,2
. (4.11)

It remains to determine the phases of (4.10) and (4.11). We write α1,0 = β1,0, α1,1 = β1,1+iγ1,1,
α0,1 = β0,1 and α0,2 = β0,2 + iγ0,2, with βi,j , γi,j ∈ R. For (4.10), we note that −α0,2 = −(β0,2 +

iγ0,2) =: r eiθ , where θ = arctan
(
γ0,2
β0,2

)
, giving the phase of (4.10) as − 1

2 arctan
(
γ0,2
β0,2

)
. Using that

γ0,2 = −λb0/2, β0,2 = −2(n0 + 1)λ2ε/a20 anda0b0 = 4δ , this is − 1
2 arctan

(
a0δ

(n0+1)ελ

)
.

For the (4.11) we have − β2
0,1

4(β0,2+iγ0,2)
= −β

2
0,1(β0,2−iγ0,2)
4(β2

0,2+γ
2
0,2)

. Hence, using that β0,1 = 2(n0 +

1)ε1/2λ/a0, this phase is given by − (n0+1)2ελa0δ
2(n+1)2λ2ε2+2δ2a20

, and the total phase by

− (n0 + 1)2ελa0δ

2(n0 + 1)2λ2ε2 + 2δ2a20
+

1

2
arctan

(
− a0δ

(n0 + 1)ελ

)
− τr

2δε
b0.

One further adjustment seems to be necessary. One would expect that the phase is continuous
in λ, and we know that for λ = 0, the phase is − τr

2δεb0. However, the limit of the λ-dependent
terms in above expression is −1/2 arctan(sgn(λ) sgn(a0)∞) = − sgn(λ) sgn(p0)π/4 and hence we
take the phase shift to be

ϕ(p0) = − (n0 + 1)2ελa0δ

2(n0 + 1)2λ2ε2 + 2δ2a20
− 1

2
arctan

( a0δ

(n0 + 1)ελ

)
+ sgn(λp0)

π

4
, (4.12)

which seems to give very good numerical results for a wide range of all parameters.
To summarize, we now have an explicit closed form for the transmitted wave packet given an

initial Gaussian of the form (2.1):

ψ̂−n
ε

(k, t) ≈ e−
i
ε tĤ

− 1

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) e−iϕ(p0) φ̂ε(η∗)χk2>4δ, (4.13)

with ϕ(p0) as given in (4.12) and the αi,j as in (2.4), or, alternatively, with the simplifications
from Section 4.6. n0 is given as indicated in (2.2). We thus have finished the justification of the
algorithm given in Section 2.



16 VOLKER BETZ AND BENJAMIN D. GODDARD

4.8. Phase shift for large momentum. For large momentum, we use the approximations a0 =

2p0 and n0 = τc/(εp0) and get the phase shift ϕ(p0) as ϕ(p0) ≈ − 1
ε

τ2
c λδp0

τ2
c λ

2+4δ2p40
− 1

2 arctan
(

4p20δ
τcλ

)
+

sgn(λp0)π4 Note that if p0 →∞ then ϕ(p0)→ 0. More concretely, we are interested in the rate at
which it goes to zero when we write p0 in terms of ε. Letting p0 = ε−α gives

ϕ ≈ −1

ε

τ2c λδ

τ2c λ
2ε1+α + 4δ2ε1−3α

− 1

2
arctan

(4ε−2αδ
τcλ

)
+ sgn(λp0)

π

4
.

Hence if α > 1/3 we see that ϕ(ε−α) → 0 as ε → 0. We note that this value of 1/3 is the same
value as that for which we have rigorous bounds on the errors [2].

From this analysis, it appears that the phase shift is a consequence of taking momenta that are
too small (or equivalently, ε that are too large).

5. Non-Gaussian incoming wavefunctions

5.1. Extension to Hagedorn wavefunctions. We note that a general Hagedorn wavefunction
[6] is a Hermite polynomial multiplied by a Gaussian. By linearity of the integral, it is sufficient

to consider the case φ̂ε(η) = ηp exp
(
−c(η − p0)2/ε

)
, p ∈ N. We perform the same rescaling as in

Section 4.2 and note that the monomial prefactor becomes (ηε1/2+η∗)p =
∑p
j=0

(
p
j

)
(ηε1/2)jη∗(p−j).

Using the same arguments as above, we obtain for each j the integral
∫

R

∫

R
dηds (ε1/2η)j exp(α2,0η

2 + α1,0η + α1,1ηs+ α0,1s+ α0,2s
2)

We now note that ∂jα1,0
exp(α1,0η) = ηj exp(α1,0η) and since differentiation with respect to α1,0

commutes with the integral, we have
∫

R

∫

R
dη ds (ε1/2η)j exp(α2,0η

2 + α1,0η + α1,1ηs+ α0,1s+ α0,2s
2)

= εj∂jα1,0

2π√
4α2,0α0,2 − α2

1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

= εj
2π√

4α2,0α0,2 − α2
1,1

exp
[ α2,0α

2
0,1

α2
1,1 − 4α2,0α0,2

]
∂jα1,0

exp
[α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
.

In more generality, we wish to compute ∂jαf where f = exp(−aα2+bα) = exp(− 2a
2 (α− b

2a )2+ b2

4a ).
It is clear that this will be f multiplied by a scaled and shifted Hermite polynomial. In fact, we
have ∂jαf = (−

√
2a)jHj

(√
2a(α− b

2a )
)
f, where Hj is the probabilist’s Hermite polynomial of order

j (namely chosen such that the coefficient of the leading order is 1).
In our case, we have a = − α2,0

α2
1,1−4α2,0α0,2

and b = − α0,1α1,1

α2
1,1−4α2,0α0,2

, giving b
2a =

α0,1α1,1

2α0,2
. Hence

(3.11) with φ̂ε(η) = ηp exp
(
−c(η − p0)2/ε

)
is given by

ψ̂−n
ε

(k, t) ≈ e−
i
ε tĤ

−(k) χk2>4δ

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)2 e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗)

×
p∑

j=0

(
p

j

)
εjη∗(p−j)

( 2α0,2

α2
1,1 − 4α2,0α0,2

)j/2
×Hj

[( 2α0,2

α2
1,1 − 4α2,0α0,2

)1/2(
α1,0 −

α0,1α1,1

2α0,2

)]
,

with the αi,j as given in (2.4).
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Using the identity Hp(x + y) = xp
∑p
j=0

(
p
j

)
x−jHj(y), with x = η∗

ε

( 2α0,2

α2
1,1−4α2,0α0,2

)−1/2
, and

y =
( 2α0,2

α2
1,1−4α2,0α0,2

)1/2(
α1,0 − α0,1α1,1

2α0,2

)
gives

ψ̂−n
ε

(k, t) ≈ e−
i
ε tĤ

−(k) χk2>4δ

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)2 e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) εp
( 2α0,2

α2
1,1 − 4α2,0α0,2

)p/2

×Hj

[η∗
ε

( 2α0,2

α2
1,1 − 4α2,0α0,2

)−1/2
+
( 2α0,2

α2
1,1 − 4α2,0α0,2

)1/2(
α1,0 −

α0,1α1,1

2α0,2

)]
.

We are interested in the leading order behaviour with respect to ε. From (2.4) and using
n0 = O(ε−1) we see that α2,0, α1,1, α0,2 are all O(1) whilst α1,0 and α0,1 are O(ε−1/2). Hence

2α0,2

α2
1,1−4α2,0α0,2

= O(1), and α1,0− α0,1α1,1

2α0,2
= O(ε−1/2), which in particular shows that the prefactor

is O(εn) whist the argument of the Hermite polynomial is O(ε−1). Thus, to leading order, only
the highest power of the Hermite polynomial contributes, giving

ψ̂−n
ε

(k, t) ≈ e−
i
ε tH

− 1

2
√

4α2,0α0,2 − α2
1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)2 e−
τc
2δε |k−η

∗| e−i
τr
2δε (k−η

∗) η∗pχk2>4δ,

which is precisely (4.9) with the Gaussian replaced by ηp exp
(
−c(η − p0)2/ε

)
.

We note that the error in this closed form is expected to be of order
√
ε. Whilst this could

be improved by taking further terms in the expansion, in the following we choose to concentrate
on the case of a wave packet which has been decomposed into a linear combination of complex
Gaussians. The main reason for this is the heuristic phase correction which is discussed in Section
4.7. From numerical studies, we see that this works well only for Gaussian wave packets, and
without this correction, the relative error between the formula and the ‘exact’ numerical wave
packet is of the order of 10%, compared to an error of around 2% for a Gaussian wave packet with
the phase correction.

5.2. General wave packets as superpositions of Gaussians. Due to the strong reliance on
the wave packet being a Gaussian in the preceding discussion, formula (4.9) is not immediately
applicable to general wave packets. However, we propose a simple algorithm which allows use
of (4.9). For a given semi-classical wave packet specified on the upper level well away from the
crossing region, we evolve it using the BO dynamics on the upper level until the mean position of
the wave packet coincides with the crossing point (which we choose without loss of generality to be
at x = 0). We then transform into Fourier space and decompose into complex Gaussians, giving a
wave packet of the form

N∑

j=1

Aj exp
(
− (p−pi)2

σ2
j ε

)
exp

(
i
pxj
ε

)
, (5.1)

where in position space xj is the offset from the crossing point.
We now need to deal with the fact that the Gaussians reach the crossing point at different times.

We fist note that, for small ε, this should be a small effect for semiclassical wavepackets: since the
wave packet is localised in a

√
ε neighbourhood of zero in position space, we have xj = O(

√
ε).

As discussed in Section 3.2, on a
√
ε neighbourhood of the origin and for times of order

√
ε, the

dynamics are well-approximated by the explicit propagators (3.9). Since the wave packets move
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with speed of order one, this is still the region of interest and we may simply insert the complex
Gaussian into (3.11).

Applying the rescaling as described in Section 4.2 gives an extra term in the exponent in (4.5)
of the form ixj(η

∗ + ε1/2η)/ε. The η∗ term combines with the Gaussian term in η∗ to give the
wave packet evaluated at η∗ as before. The remaining term provides a contribution of the form
ixj/ε

1/2 to α1,0 in (2.4).
It is now easy to see that in the small ε limit this term is negligible. Since xj = O(

√
ε) we see

that the new term in α1,0 is order one. In contrast, the dominant terms in α1,0 are of order ε−1/2

and one may apply (4.9) directly to the complex Gaussian.
We note that for the values of ε under consideration in the numerics, ignoring this correction

increases the relative error by the order of 0.1%, which is quite significant given the high accuracy
of the final formula. In the implementation of the non-Gaussian wave packet below, we therefore
included the additional term ixj/ε

1/2 in the expression for α0,1.
The above analysis suggests a simple and efficient algorithm for calculating the form of the

transmitted wave packet, even if not of Gaussian form, given an initial wave packet ψ−∞ located
well away from the transition point in position space.

(1) Evolve the initial wave packet on the upper BO level using the uncoupled BO dynamics
until its centre of mass reaches the transition point. This can either be pre-determined
by finding the point at which the two energy levels are closest, or, as would be required
in higher dimensions, by monitoring the energy gap at the centre of mass over time and
determine its minimum.

(2) Transform the resulting wave packet into momentum space and decompose into a linear
combination of complex Gaussians as in (5.1).

(3) Apply formula (2.3) to each complex Gaussian in turn and take the corresponding linear
combination.

(4) Evolve the resulting transmitted wave packet using the BO dynamics on the lower level,
until the centre of mass reaches the scattering region.

Assuming that the energy levels become constant in the scattering regime, the computed wave
packet will agree up to small errors with that computed using the full coupled dynamics.

Note that step (2) may be accomplished using a standard numerical recipe such as non-linear
least squares optimization. In practice the formula is more accurate for narrow Gaussians (since
this improves a number of the approximations including the choice of fixed n0 and the heuristic
phase shift) and thus it may be worth constraining the variances of the Gaussians. Since the
application of the formula is cheap (simply multiplications in Fourier space over a region in which
the modulus of the wave packet is significant – comparable to one time step in uncoupled B-O
dynamics) and step (3) scales linearly with the number of Gaussians, increasing the number of
Gaussians whilst decreasing their variances would be a reasonable approach to increase accuracy.

It is important to realise that, although this algorithm performs a molecular dynamics calcu-
lation using Gaussian wave packets, it does not share the obstructions of most Gaussian-based
methods (see e.g. [14]). These occur mainly due to the Gaussians being not orthogonal, and the
resulting ill-conditioning of various matrices under time evolution. Since we only require that the
wave packet is decomposed into Gaussians at the crossing point, transmitted, and re-summed on
the lower level, we do not encounter such problems. In fact, one is free to choose any method
of propagation on the adiabatic levels, for example the method of Hagedorn wave packets [11],
something which will be important in higher dimensions, where simple grid-based methods are
prohibitively expensive.
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Figure 1. The two adiabatic energy surfaces V± = ±ρ(x) + d(x) with ρ(x) =√
X2(x) + Z2(x). Z = α tanh(x) + βx2/ cosh(x), X = δ, d = λ tanh(x), with the

parameters α = 0.5, β = −0.4, δ = 0.5 and λ = 1. Note that the avoided crossing
(minimum of the energy gap) is at x = 0.

6. Numerics

We now compare the results of formula (2.3) to those of high-precision fully-coupled numerics.
For ease of demonstration, we set the transition point to be at x = 0 and t = 0 and choose to
specify the initial wave packet φ as a linear combination of complex Gaussians in momentum space

at the crossing time. This simplifies the implementation of the above algorithm, as φ̂ε is already in
the required form. Further, we set ε = 1/50, which gives reasonably small transition probabilities,
whilst still enabling the ‘exact’ calculations to be performed. Note that, when transformed to
position space, both examples have mean position zero.

To begin both the full numerics and the implementation of the above algorithm, we evolve φ on
the upper BO surface to large negative time (i.e. to a position where the potentials are essentially
flat) to give a good approximation φ−T ≈ ψ−∞.

The full numerics were performed using a symmetric Strang splitting in matlab with initial
condition φ−T , which is run to a time t∗ > 0 where once again the potentials are essentially flat.
In particular, for times t > t∗, the lower component ‖ψ−0 (t)‖ is constant. We then evolve ψ−0 (t∗)
backwards in time to t = 0 and compare its Fourier transform to formula (2.3). The calculation
was performed on a grid with 16,384 points in both the position ([−40, 40]) and corresponding
momentum ([−12.87, 12.87]) spaces, with T = t∗ = 4 and 1000 time steps. Doubling both the
number of space and time gridpoints produces a wave function which differs from this computation
by around 0.01% in the L2 norm, and hence we take the numerical simulation to be ‘exact’.

We choose Z = α tanh(x) + βx2/ cosh(x), X = δ and d = λ tanh(x). For these choices, δ
and λ correspond to their earlier use, the ratio α2/δ determines the second derivative of ρ at the
transition point, and β primarily affects the asymmetry of the potential. In particular, β = 0 gives
τr = 0. We set α = 0.5, β = −0.4, δ = 0.5 and λ = 1. This leads to the two potential surfaces
given in Figure 1, with τδ = −0.16611 + 0.53772i, which can be easily calculated numerically.
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Figure 2. Top: The absolute value of the transmitted wave packet ψ̂−
ε

as given
by (2.3) (solid, left axis) and the error as compared to the numerical solution

φ̂−
ε

computed as described using the fully coupled dynamics (dashed, right axis).
Inset is the initial Gaussian wave packet in momentum space at the transition
time. Bottom: As in the top plot but showing the argument (phase) of the wave
packets.

The first wave packet we treat is given by the complex Gaussian A exp
(
−c(p − p0)2/(2ε)

)
,

with p0=5, c = 1/(2σ2), σ =
√

2 and A chosen such that the wave packet is normalized in L2.
The second case we consider is a linear combination of three complex Gaussians of the form (5.1)
where |Aj | = A, j = 1, 2, 3, which in turn is chosen to normalize the wave packet. The remaining
parameters are given, with c = 1/(2σ2) by
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Figure 3. As Figure 2 but for the non-Gaussian wave packet described in the text.

Aj pj σj xj
A 5.00 1.414 -0.0238
A 5.15 1.664 0.0186
−A 4.90 0.714 0.0328

In both cases, the relative error is less than 2% over the full interval where the transmitted
wave function is essentially supported. The transition probability ‖ψ−‖2 in both cases is of the
order 10−5 (3.03 × 10−5 and 3.48 × 10−5 for the Gaussian and non-Gaussian cases respectively).
In addition to these two examples, we have tested a wide range of parameters for the both the
potentials and semi-classical wave functions, and all results are good to within a few percent. They
deteriorate only when ε (and thus also ‖ψ−‖) becomes too large and we leave the adiabatic regime,
or when p0 (and thus also ‖ψ−‖) gets too small and our many approximations requiring that p0
is suitably large break down. In particular, the relative error is less than a few percent when the
transition probability is in the range 10−2–10−15.
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