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Introduction

Some of the basic ideas of this work can be most easily seen in a simple exam-
ple. Consider a quantum mechanical particle described by the Schrödinger operator
(Hamiltonian) H = −1

2
∆ + V in L2(Rd). V : Rd → R acts as a multiplication

operator, and we choose V in such a way that H is self-adjoint and bounded below.
Thus the spectrum of H is a subset of R, and its infimum E0 is finite.

Assume that we have found a ground state ofH, i.e. an eigenfunction ψ ∈ L2(Rd)
with Hψ = E0ψ. Now we want to find out something about the properties of ψ;
of course ψ is square integrable by definition, but we might e.g. be interested in
detailed information about the decay of ψ at infinity.

Two very different methods exist for getting answers to such questions. One
of them, which one could call the analytic approach, uses the eigenvalue equation
Hψ = E0ψ along with techniques from partial differential equations. This is a very
natural thing to do and is extremely successful in many cases [42].

The other approach uses methods from probability theory and is known as func-
tional integration. In the example given above, one would study the measure

dµT (x) =
1

ZT
f(x−T ) exp

(
−
∫ T

−T
V (xs) ds

)
f(xT ) dW(x), (0.1)

defined on the space C(R,Rd) of continuous functions x = (xt)t∈R. In (0.1), W is
the (infinite mass) Wiener measure, T > 0, f ∈ L2(Rd), and ZT normalizes µT to a
probability measure. To obtain a first understanding of the measure µT , note that it
gives high probability to paths that spend a lot of time in regions where V is small,
while suppressing paths that spend too much time in regions where V is large.

In order to understand what (0.1) has to do with the ground state of H =
−1

2
∆ + V , we need the Feynman-Kac formula: it tells us that(

e−T (H−E0)f
)
(q) =

∫
e−

R T
0 (V (xs)−E0) dsf(xt) dWq(x) (0.2)

where Wq is the measure of Brownian motion starting in q ∈ Rd. The strongly
continuous contraction semigroup e−T (H−E0) on the left hand side of (0.2) is derived
from H via functional calculus. We now take two copies of the right hand side of
(0.2), reverse time in one of them (resulting in a measure on C(] −∞, 0],Rd)) and
glue the two parts together at time 0. Since Brownian motion is time reversible and
has the Markov property, integrating over q ∈ Rd with respect to Lebesgue measure
then yields (0.1). This explains the connection between (0.1) and the Hamiltonian
H.

The relevance of (0.1) for the study of the ground state ψ now comes from the
fact that by spectral theory,

lim
T→∞

e−T (H−E0)f =
〈ψ,f〉

L2(Rd)

‖ψ‖2
L2(Rd)

ψ (0.3)



ii

in L2(Rd) for all f ∈ L2(Rd). Thus for large T , the Lebesgue-density of the time
zero distribution of µT , i.e. of the image measure of µT under the point evaluation
map x 7→ x0, will be very close to ψ2. This gives us a strategy to study ψ: first
ensure that (0.1) has a T → ∞ limit, and then study the t = 0 distribution of the
limiting measure.

At first sight, a method involving objects like Wiener measure looks much more
complicated and less practical than the alternative of just studying the Schrödinger
operator directly via the eigenvalue equation. In fact, in cases of quantum systems
with few degrees of freedom (like the example above), the more powerful results
have been obtained by the analytic approach, although even in this setup functional
integration has been applied successfully [45, 46]. The situation where functional
integration really becomes superior are systems of quantum field theory which have
infinitely many degrees of freedom. Here often functional integrals are the only
method available, and in some cases they are even used to define the Hamiltonian
itself [19, 44].

In my thesis I consider the Nelson model, which describes a quantum particle
coupled to a bosonic scalar field. Nelson’s model is a borderline case. While it does
feature infinitely many degrees of freedom, it can still be treated by the analytic
method, and in fact most of the results in the literature have been obtained that
way [6, 20]. One purpose of the present work is to see what functional integration
gives us when applied to Nelson’s model. When we write down the functional integral
for Nelson’s model, an infinite dimensional Ornstein-Uhlenbeck process appears in
addition to the Wiener measure from the example above, and in the exponent we
have an additional integral due to the interaction of the particle with the field. The
question now is how good a control we can obtain over these objects.

One strategy is to immediately integrate over the field degrees of freedom, which
can be done explicitly since the coupling of the field to the particle is linear in the
field variables, and the corresponding path measure is Gaussian. The result is an
expression of the form

dµT (x) =
1

ZT
exp

(
−
∫ T

−T
V (xs) ds−

∫ T

−T
ds

∫ T

−T
dtW (xt − xs, t− s)

)
dW(x),

(0.4)
where W : Rd × R → R comes from the interaction with the field. This technique,
which goes back to R. Feynman [14], has been used by E. Nelson [32] to investigate
the ultraviolet divergence in the model, and by H. Spohn [47] to estimate the effective
mass of the polaron.

An advantage of the above strategy is that we do not have to deal with stochastic
processes on infinite dimensional state spaces. A disadvantage is that only infor-
mation about the particle, not about the field, can be obtained. In particular, the
method can not answer questions like
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a) What is the expected number of bosons of given momentum in the ground
state?

b) What is the expected number of bosons with position in M ⊂ Rd?

c) What is the average strength of the bosonic field and how large is its variance?

In order to answer such questions, we will have to deal directly with the infinite
dimensional Ornstein-Uhlenbeck process at first, using the linearity in the field vari-
ables only at a later stage of our considerations.

It is obvious that in functional integration, measures of the form (0.1) and (0.4)
play a crucial role. They are, at least optically, very similar to a class of probabil-
ity measures appearing in statistical mechanics, the Gibbs measures. As a crucial
difference however, Gibbs measures are usually defined on a countable product of
measurable spaces. More concretely, if (0.4) was to fit into the classical theory of
Gibbs measures, W would have to be a countable product of measures on Rd, which
it is obviously not. Measures of the type (0.4) will be called Gibbs measures relative
to Brownian motion. A systematic study of such measures and their T →∞ limits
emerged only recently [38], and we take the opportunity to develop the theory a
little further.

Let us give an outline of the thesis: Chapter 1 is devoted to a presentation of
Nelson’s model. We derive it from its classical counterpart on a heuristic level, give
the well-established Fock representation, the representation in function space and
the connection of the two. Extra care is taken to clarify this connection as well as
its influence on the choice of the Gaussian measure in function space. While none
of the results here is completely new, many of the proofs, especially in the function
space context, are at least not easily available in the literature. Small improvements
are made on some existing results like the Feynman-Kac-Nelson formula or the path
continuity of the infinite dimensional Ornstein-Uhlenbeck process.

In Chapter 2, we study Gibbs measures relative to Brownian motion. We pro-
pose a framework of definitions and notions for these measures, systematizing and
extending the approaches in [3, 4, 38]. We then give results about existence and
uniqueness of infinite volume Gibbs measures in various contexts.

Chapter 3 resumes the study of Nelson’s model, investigating properties of its
ground state along the lines of (0.2) and (0.3). First, we give an overview over the
current knowledge concerning the existence of the ground state. A general formula to
calculate ground state expectations for many important operators is then established
and applied to answer questions like a), b), c) above.

It may have become obvious from the preceding discussion that there have been
two main objectives I had when writing this thesis: the first, of course, was the
presentation of the main mathematical results, contained in Sections 2.3, 3.2 and
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3.3. The second, and at least of equal importance to me, was to smoothen the
learning curve for anybody who needs to work his way into the topics of Chapter 1,
a learning curve that I experienced as being fairly steep. It is up to the reader to
decide how much I succeeded.
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Chapter 1

Nelson’s model

1.1 A classical particle-field model

Nelson’s model is a simplified description of a non-relativistic, charged quantum
particle interacting with its own quantized radiation field. The simplification con-
sists in ignoring the vector character of the Maxwell field and using a scalar field
instead. One of the main aims of this work is to study properties of states of minimal
energy, but before we describe the quantum model, it seems useful to take a look
at the classical model and, at least on a heuristic level, to show how the quantum
model can be derived from it. This will be done in the next two sections, where we
restrict ourselves to three dimensional space for convenience. A reader who is only
interested in the mathematical aspects of this work may safely skip the first two
sections.

The scalar field is a function φ : R3×R → R, (x, t) 7→ φ(x, t), which has to fulfill
the wave equation with inhomogeneity (= source) localized around the position
q ∈ R3 of the particle. The corresponding equation reads

∂2

∂t2
φ(x, t) = ∆xφ(x, t)− %(x− q(t)). (1.1)

The function % has support concentrated near 0 and is used to regularize the coupling
of the particle with the field. The particle is assumed to feel the effect of an external
potential x 7→ V (x) as well as a force due to its interaction with the field.

The equations of motion for such a system read

φ̇(x, t) = π(x, t), π̇(x, t) = ∆xφ(x, t)− %(x− q(t)),
q̇(t) = p(t), ṗ(t) = (−∇V )(q(t)) +

∫
φ(x, t)(∇%)(x− q(t)) dx,

(1.2)

where (x, t) 7→ π(x, t) and p ∈ R3 are the canonical conjugate (momentum) field
and the momentum, respectively. Thus the Hamiltonian function

Hcl : (φ, q, π, p) 7→ Hcl(φ, q, π, p) ∈ R

1
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is given by

H(φ, q, π, p) =
1

2
p2+V (q)+

1

2

∫ (
(π(x))2 + |∇φ(x)|2

)
dx+

∫
φ(x)%(x−q) dx. (1.3)

We are now looking for stationary solutions of (1.2) that minimize the Hamilto-
nian functional (1.3). Let us assume for simplicity that V has a unique minimum
at q0 ∈ R3. In order to minimize (1.3), we then obviously have to take

p = 0, q = q0 and π(x) = 0.

This leaves us with the condition∫ (
1

2
|∇φ(x)|2 + φ(x)%(x− q0)

)
dx = minimal

and an application of variational calculus leads to

−∆φ(x) + %(x− q0) = 0.

Thus, if we assume that % is in the range of the Laplace operator acting in L2(R3),
we have the solution

φ(x) =
(
∆−1%(.− q0)

)
(x) =

1

4π

∫
1

|x− y|
%(y − q0) dy. (1.4)

In sum, a configuration minimizing (1.3) consists of a particle sitting in the minimum
q0 of V , together with a field that decays like the inverse of the distance from the
particle. One of the main objectives of this work is to obtain similar information
about the state of minimal energy for the corresponding quantum system.

1.2 Quantizing the particle-field model

In this section we will give a purely heuristic outline of how one could guess the
quantum system to be presented in Sections 1.3 and 1.4 from the classical system
given in Section 1.1. No attempt at mathematical rigor is made.

There exists a standard recipe, known as canonical quantization, for deriving
the quantum mechanical description of a given classical Hamiltonian particle system
with canonical variables p, q ∈ Rn. The procedure is to replace in the Hamiltonian
function each occurrence of q by the operator of multiplication with q acting in
L2(Rn), and each occurrence of p by the operator −i∇q acting in the same space.
Then one has to symmetrize the resulting operator in order to get a formally self-
adjoint operator H and to prove that H is in fact self-adjoint on a suitable domain.
H is then the Hamilton operator of the quantum system.
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When we try to apply this procedure to the Hamilton functional (1.3), we have
to decide what to do with the fields φ and π. An obvious choice is to discretize the
integrals in (1.3) as follows: we take a centered cube Λ ⊂ R3 and divide it into N3

small cubes of equal size. We fix the center xj of each of the small cubes, and put

H
(N)
cl (φ, q, π, p) =

1

2
p2 + V (q) +

|Λ|
2N3

N3∑
j=1

(π(xj))
2 +
∑
xi∼xj

(
φ(xi)− φ(xj)

δ

)2
+

+
|Λ|
N3

N3∑
j=1

φ(xj)%(xj − q). (1.5)

Here, xi ∼ xj means that xi neighbors xj on the lattice, |Λ| is the volume of Λ, and
δ is the distance of the centers of two neighboring cubes. (1.3) is recovered from
(1.5) by taking N → ∞ and Λ → ∞ in such a way that the volume of the small
cubes goes to zero.

We now apply the canonical quantization procedure to (1.5) with the result

H(N) = −1

2
∆q + V (q) +

|Λ|
2N3

N3∑
j=1

−∆Qxj
+
∑
xi∼xj

(
Qxi

−Qxj

δ

)2
+

+
|Λ|
N3

N3∑
j=1

Qxj
%(xj − q). (1.6)

H(N) is an operator in L2(R3 × RN3
) acting on functions of the variables q and

(Qx1 , . . . , Qxn). To undo the discretization, we now would like to take the N →
∞, |Λ| → ∞ limit in (1.6). However, this is a lot less straightforward than it was
in (1.5), one obvious difficulty being that H(N) acts in a different Hilbert space for
each N .

One way to take the limit in (1.6) is the Fock space approach. Only an outline
of this extremely messy procedure is given here, somewhat more detail can be found
in [32]. The first step is to transform L2(R3×RN3

) in such a way that the coupling
between the Qxj

for different j disappears in the third term of (1.6). This leads to
a system of N3 independent, quantum mechanical harmonic oscillators. Using the
representation in form of creation operators a∗ and annihilation operators a for such
oscillators [19], one arrives at

H
(N)
F = −1

2
∆q + V (q) +

|Λ|
N3

N3∑
j=1

|kj|
(
a∗kj
akj

+
1

2

)
+

+
|Λ|
N3

N3∑
j=1

1√
2|kj|

(
a∗kj
e−ikjq%̂(kj) + akj

eikjq%̂(−kj)
)
. (1.7)
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Here, kj ∈ R3 with kj = xj = the points of the original lattice, and the reason
that we don’t write xj any more is that the transformation which leads to (1.7) is
essentially a discrete Fourier transformation on the lattice of the xj. We now replace
the terms a∗kj

akj
+ 1/2 in (1.7) by a∗kj

akj
. This procedure, which is known as energy

renormalization, is necessary because otherwise inf specH
(N)
F → ∞ as N, |Λ| → ∞.

Fortunately, it is also not harmful since subtracting a constant from a Hamiltonian
does not change the physics.

For each kj, we now take the complete, orthonormal set of eigenfunctions {ψ(kj)
n :

n ∈ N} belonging to the operator a∗kj
akj

and construct the Fock space over L2(RN3
)

with the help of these eigenfunctions as described in Appendix A.1. By formally
taking the n → ∞, |Λ| → ∞ limit as described there also, we arrive at the Hamil-
tonian

HF = −1

2
∆q + V (q) +

∫
|k|a∗kak d3k +

∫
1√
2|k|

(
a∗ke

−ik·q%̂(k) + ake−ik·q%̂(k)
)
d3k

(1.8)
acting on the symmetric Fock space F(L2(R3)). A slight generalization of the opera-
tor (1.8) as well as symmetric Fock space will be defined rigorously and investigated
in Section 1.3.

There is an alternative route for taking the limit in (1.6). The key observation
is that the third term (= free field term) of (1.6),

H
(N)
f =

|Λ|
2N3

N3∑
j=1

−∆Qxj
+
∑
xi∼xj

(
Qxi

−Qxj

δ

)2
 , (1.9)

is, after the energy renormalization, unitarily equivalent to the generator of an N3-
dimensional Ornstein-Uhlenbeck process. To be more precise, let us denote by A
the positive, symmetric matrix generating the quadratic form in the second term of
(1.9), i.e. 〈

~Q,A~Q
〉

RN3
=

N3∑
j=1

∑
xi∼xj

(
Qxi

−Qxj

δ

)2

, (1.10)

with ~Q = (Qx1 , . . . , QxN3 ). Writing
√
A for the nonnegative square root of A, it can

be checked directly that

ψ
(N)
f = exp

(
−1

2

〈
~Q,
√
A~Q
〉

RN3

)
is an eigenfunction of H

(N)
f to the eigenvalue tr(

√
A)/2. Using the positivity of ψ

(N)
f

and the strict positivity the kernel of of e−H
(N)
f , a Perron-Frobenius argument implies

that ψ
(N)
f is the unique ground state, i.e. eigenfunction corresponding to the bottom
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of the spectrum, of H
(N)
f . When we subtract the ground state energy tr(

√
A)/2 from

H
(N)
f and apply the ground state transformation to the resulting operator, we arrive

at the generator of a stationary Ornstein-Uhlenbeck process with state space RN3
,

mean value 0 ∈ RN3
and covariance

E((Xs)i(Xt)j) =
1

2

(√
A
−1
e−|t−s|

√
A
)
i,j
, (1.11)

where the subscripts denote components of vectors resp. matrices. Details on the
above procedure are given in Appendix A.3.

Note however that we cheated slightly above, and the resulting damage is that
(1.11) does not make sense: A as given in (1.10) is not invertible. This can be
healed by replacing A with A+ µI, µ > 0, eventually resulting in the Nelson model
for massive bosons of mass µ. More suitable for our purposes is to impose zero
boundary conditions, i.e. to add a term Q2

xj
at the right hand side of (1.10) for each

xj corresponding to a small cube at the boundary of Λ. This correction will then
drop out upon taking the |Λ| → ∞ limit.

Now we want to know what becomes of the Ornstein-Uhlenbeck process when
N →∞ and |Λ| → ∞. For this, it is better to write (1.11) in the form

E
(
〈f,Xs〉RN3 · 〈g,Xt〉RN3

)
=
〈
f,
√
A
−1
e−|t−s|

√
Ag
〉

RN3
, (1.12)

valid for all f, g ∈ RN3
. Now we identify vectors ~Q = (Qx1 , . . . , QxN3 ) ∈ RN3

with

step functions F (N) : R3 → R which are constant on the small cubes corresponding to
the xj and zero outside Λ. With this identification, the state space of the Ornstein-
Uhlenbeck process is now a space of functions on R3, and the operator −A is a
discrete Laplacian on the lattice of the xi. Thus in the limit, we expect that the
actual Laplacian on R3 should appear, and H

(N)
f in (1.9) will become the generator

of an infinite dimensional Ornstein-Uhlenbeck process with state space that is some
space of (generalized) functions on R3, mean 0 and covariance

E
(
〈f,Xs〉L2(R3) · 〈g,Xt〉L2(R3)

)
=
〈
f,
√
−∆

−1
e−|t−s|

√
−∆g

〉
L2(R3)

, (1.13)

provided this expression makes sense. Turning to the coupling term on the right
hand side of (1.6), we see that it is in the step function picture just the operator of
multiplication with the linear functional

F (N) 7→
N3∑
j=1

F (N)(xj)%(xj − q).

So in the limit, the coupling will be the linear functional

X 7→
∫
X(x)%(x− q) d3x
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acting in L2(R3). A rigorous treatment of the above structure is contained in Section
1.4.

1.3 Nelson’s model in Fock space

Although it is not obvious from the way we derived the Fock space from the clas-
sical field in the previous section, the best way to think about it is as a model of
indistinguishable quantum particles, where the number of particles is not conserved.
We will say more on this after giving precise definitions.

Definition 1.3.1 For n ∈ N, denote by F (n) = L2(Rd)⊗̂n the space of (complex-
valued) L2(Rdn)-functions f which are symmetric in the sense that for each permu-
tation π of {1, . . . , n} and each k1, . . . , kn ∈ Rd, we have

f(k1, . . . , kn) = f(kπ(1), . . . , kπ(n)).

Moreover, put F (0) = C. F (n) is called n-th Fock space component. The symmetric
Fock space F is the set of all F = (f0, f1, . . .) ∈

⊕∞
n=0F (n) for which the norm

‖F‖2
F =

∞∑
n=0

‖fn‖2
L2(Rd)⊗̂n , (1.14)

is finite. Let us write Pn for the projection from F onto F (n), and F (n) instead of
PnF for F ∈ F . We will also write F (n) for the n-th (and only nonzero) component
of PnF .

The interpretation is that PnF consists of the quantum mechanical states of the sys-
tem with exactly n particles. The function F (n) ∈ PnF then determines the exact
behavior of these particles, while the symmetry condition corresponds to indistin-
guishability. In the model of an electron coupled to its radiation field, the ‘particles’
would be photons, but since in the Nelson model we have a scalar field instead of
a vector field, they will just be called bosons in the following. If ‖F‖F = 1, then
〈F, PnF 〉F represents the probability for finding exactly n bosons in the system de-
scribed by F . Note that by (1.14), this probability must decay faster than 1/

√
n

for large n in order to have F ∈ F . The reason for this constraint is mathematical
convenience rather than physical necessity, a fact that we will encounter again when
discussing the infrared divergence of Nelsons model.

Let us now introduce some important operators acting in F . Obviously, it will
be enough to specify the action of these operators on each F (n), n ∈ N0. For this
purpose, we will write F = (F (0), F (1), . . .) for F ∈ F . F (n) will be denoted as a
pointwisely defined function for convenience, but all of the following equalities are
to be understood in L2-sense.
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Definition 1.3.2 Let g : Rd → C be a measurable function. The following operators
in F are defined on functions F ∈ F such that the image of F is again in F .

(NF )(n)(k1, . . . , kn) = nF (n)(k1, . . . , kn), (1.15)

(a∗(g)F )(n)(k1, . . . , kn) =
1√
n

n∑
i=1

g(ki)F
(n−1)(k1, . . . , \ki, . . . , kn), (1.16)

(a(g)F )(n)(k1, . . . , kn) =
√
n+ 1

∫
g(k)F (n+1)(k, k1, . . . , kn) dk (1.17)

(dΓ(g)F )(n)(k1, . . . , kn) =
n∑
i=1

g(ki)F
(n)(k1, . . . , kn) (1.18)

The \ki in (1.16) means that the variable ki is omitted. Also, by the usual convention,
the sums in (1.16) and (1.18) are zero for n = 0. N is called number operator,
a∗(g) is called creation operator associated with g, a(g) is called annihilation
operator associated with g, and dΓ(g) is called differential second quantization
of the operator of multiplication with g. Alternative notations are

a∗(g) ≡
∫
a∗kg(k) dk, a(g) ≡

∫
akg(k) dk, dΓ(g) ≡

∫
a∗kakg(k) dk.

Note that N = dΓ(1). Except in the case of dΓ(g) which will be treated later, the
names of the operators above are easy to explain. a∗ takes F (n) to F (n+1), thus
it creates a boson that is described by g. Similarly, a(g) takes F (n) to F (n−1) and
therefore destroys a boson. Finally, N counts the number of bosons in F ∈ F in the
sense that 〈F,NF 〉F / ‖F‖

2
F is the expected number of bosons in the state F .

In order to say a little more about the domains of the operators from Definition
1.3.2 as well as for later purposes, the following inequality is useful.

Proposition 1.3.3 Let g, h : Rd → C be measurable with g ∈ L2(Rd) and gh ∈
L2(Rd). Then for each F ∈ F such that dΓ(|h|2)F ∈ F , we have a(gh)F ∈ F ,
a∗(gh)F ∈ F , and

‖a(gh)F‖2
F ≤ ‖g‖2

L2(Rd)

〈
F, dΓ(|h|2)F

〉
F , (1.19)

‖a∗(gh)F‖2
F ≤ ‖g‖2

L2(Rd)

〈
F, dΓ(|h|2)F

〉
F + ‖gh‖2

L2(Rd) ‖F‖
2
F (1.20)

Proof: Obviously it is enough to consider Fock space components. Note first that

〈
F (n), (dΓ(|h|2)F )(n)

〉
L2(Rdn)

=
n∑
i=1

∫
|F (n)(k1, . . . , kn)|2|h|2(ki) dk1 · · · dkn =

= n

∫
|F (n)(k1, . . . , kn)|2|h|2(k1) dk1 · · · dkn.
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Now, ∥∥(a(gh)F )(n−1)
∥∥2

L2(Rd(n−1))
=

= n

∫
dk2 · · · dkn

∣∣∣∣∫ g(k1)h(k1)F
(n)(k1, . . . , kn) dk1

∣∣∣∣2 ≤
≤ n ‖g‖2

L2(Rd)

∫
|h|2(k1)|F (n)(k1, . . . , kn)|2 dk1 · · · dkn =

= ‖g‖2
L2(Rd)

〈
F (n), (dΓ(|h|2)F )(n)

〉
L2(Rdn)

,

and summation over n gives (1.19). To get the other inequality, observe that

∥∥(a∗(gh)F )(n+1)
∥∥2

L2(Rd(n+1))
=

1

n+ 1

n+1∑
i,j=1

∫
g(ki)h(ki)g(kj)h(kj)× (1.21)

×F (n)(k1, . . . , \ki, . . . , kn+1)F
(n)(k1, . . . , \kj, . . . , kn+1) dk1 · · · dkn+1.

The i = j terms of (1.21) now add up to ‖gh‖2
L2(Rd)

∥∥F (n)
∥∥
L2(Rdn)

, while the n(n+1)

terms with i 6= j are by symmetry all equal to∫
g(k1)h(k1)g(k2)h(k2)F (n)(k1, k3, k4, . . . , kn+1)F

(n)(k2, . . . , kn+1) dk1 · · · dkn+1 ≤

≤
∫
dk3 · · · dkn+1

(
‖g‖2

L2(Rd)

∫
|h|2(k)|F (n)(k, k3, . . . , kn+1|2 dk

)
=

=
1

n
‖g‖2

L2(Rd)

〈
F (n), (dΓ(h2)F )(n)

〉
L2(Rdn)

.

Plugging this inequality into (1.21) and summing over n ∈ N gives (1.20). �
A first application of the above estimates is

Proposition 1.3.4 The number operator N is self-adjoint on the dense domain

D(N) =

{
F ∈ F :

∞∑
n=0

n2
∥∥F (n)

∥∥2

L2(Rdn)
<∞

}
.

Moreover, a∗(g) and a(g) are well defined on this domain, with

〈F, a(g)G〉F = 〈a∗(ḡ)F,G〉F for all F,G ∈ D(N). (1.22)

Above, ḡ denotes the complex conjugation of g.

Proof: To show the assertions about N and D(N) is a matter of checking definitions,
as is (1.22). The assertion a∗(g)F ∈ F and a(g)F ∈ F for F ∈ D(N) follows from
Proposition 1.3.3 by putting h = 1 there. �
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We now introduce a set E ⊂ F which is total in F , i.e. linear combinations of
elements from E are dense in F . The purpose is that we will make definitions and
statements about linear objects on F for the elements of E and extend by linearity.
For f1, . . . , fn ∈ L2(Rd) write

(f1⊗̂ . . . ⊗̂fn)(k1, . . . , kn) =
1

n!

∑
π∈Πn

f1(kπ(1)) · · · fn(kπ(n)) (1.23)

for the symmetric tensor product of f1, . . . , fn. Above, Πn is the set of all per-
mutations on {1, . . . , n}. It is then proved by standard tools of integration theory
that

Proposition 1.3.5 The set

En = {f1⊗̂ . . . ⊗̂fn : f1, . . . , fn ∈ L2(Rd)}

is total in F (n). Consequently, the set

E = {(0, . . . , 0, Fn, 0, . . .) ∈ F : Fn ∈ En, n ∈ N0}

is total in F .

By picking the fj from an orthonormal basis of L2(Rd) and normalizing correctly,
we can even obtain an orthonormal basis of F [22]. Moreover, the polarization
identity for multilinear maps [37] implies that we also get a total set when requiring
in addition f1 = . . . = fn in the definition of En. We will not use any of these facts.

With the help of E , we now study second quantization a little more closely. First,
we give another definition which includes an extension of (1.18)

Definition 1.3.6 Let A be an operator in L2(Rd). For f1, . . . , fn ∈ D(A) define

Γ(A)(f1⊗̂ . . . ⊗̂fn) = Af1⊗̂ . . . ⊗̂Afn (1.24)

dΓ(A)(f1⊗̂ . . . ⊗̂fn) =
n∑
k=1

f1⊗̂ · · · ⊗̂fk−1⊗̂Afk⊗̂fk+1⊗̂ · · · ⊗̂fn (1.25)

and extend by linearity. Γ(A) is called second quantization of A, and dΓ(A) is
called differential second quantization of A.

By checking definitions, we may see that (1.25) is consistent with (1.18), i.e. for the
special choice F = f1⊗̂ . . . ⊗̂fn and A = multiplication with g , we get (1.25) from
(1.18). In the same way, we find

a∗(g)(f1⊗̂ . . . ⊗̂fn) =
√
n+ 1g ⊗̂f1⊗̂ . . . ⊗̂fn,

a(g)(f1⊗̂ . . . ⊗̂fn) =
1√
n

n∑
i=1

〈
f̄i, g

〉
L2(Rd)

⊗̂
j 6=i

fj.



10 CHAPTER 1. NELSON’S MODEL

If A is a bounded operator with ‖A‖ ≤ 1, then also Γ(A) is bounded with ‖Γ(A)‖ ≤
1. The proof can be found in [34]. However, in our case, namely when A is the
operator of multiplication with g ∈ L∞ and ‖g‖∞ ≤ 1, the statement is obvious
since then

(Γ(g)F )(n)(k1, . . . , kn) =

(
n∏
i=1

g(ki)

)
F (n)(k1, . . . , kn).

There is a natural connection between second quantization and differential second
quantization: If A is self-adjoint and A ≥ 0, then Γ(e−tA) is a strongly continuous
semigroup of contractions on F , and thus there exists the generator B of this semi-
group, a densely defined, self-adjoint operator in F with d

dt
Γ(e−tA)F |t=0 = BF for

all F ∈ D(B). A direct check for the elements of E and extension by linearity show
that B = dΓ(A), which also gives a reason for the word ‘differential’ in the name of
dΓ(A).

We are now prepared to give a rigorous definition of the operator we wrote down
in (1.8) and to show that it is self-adjoint and bounded below. We will slightly
generalize (1.8) by allowing for a more general dispersion relation. Let % : Rd → R
and ω : Rd → R be measurable functions satisfying the following assumptions:

ω(k) = ω̄(k) = ω(−k), %(k) = %̄(k), (1.26)

0 < ω(k) except on a set of Lebesgue measure zero, (1.27)

%̂√
ω
∈ L2(Rd),

%̂

ω
∈ L2(Rd). (1.28)

Define

Hf =

∫
ω(k)a∗kak dk = dΓ(ω) (1.29)

HI =

∫
1√

2ω(k)

(
%̂(k)e−ikqa∗k + %̂(k)eikqak

)
dk =

= a∗
(
%̂e−iq.√

2ω

)
+ a

(
%̂e−iq.√

2ω

)
. (1.30)

These are the last two terms of (1.8). Hf accounts for the energy contained in the
field configuration, while HI gives the interaction energy between field and particle.
HI is an operator in L2(Rd) ⊗ F , but since in the L2(Rd) component it is just
an operator of multiplication, we can (and will) also view it as an operator in F
depending on the parameter q ∈ Rd whenever this is convenient.

The energy of the particle is described by

Hp = −1

2
∆ + V (1.31)
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acting in L2(Rd), where V : Rd → R is Kato-decomposable (see Appendix A.2) and
∆ is the d-dimensional Laplace operator. Let us emphasize that in Appendix A.2
we make the convention that a constant is added to V such that inf specH = 0.

We now define the full Nelson Hamiltonian.

Definition 1.3.7 Let Hf , HI and Hp be as in (1.29), (1.30) and (1.31), respectively.
The (formal) operator

HF = Hp ⊗ 1 + 1⊗Hf +HI acting in L2(Rd)⊗F

is called Hamiltonian of Nelson’s model in Fock space.

We must say something about the domain of HF in order to ensure that HF is a
densely defined, self-adjoint operator in L2(Rd)⊗F . Fortunately, most of the work
has already been done in Proposition 1.3.4.

Proposition 1.3.8 The operator H0 = Hp⊗ 1 + 1⊗Hf is self-adjoint and nonneg-
ative. Moreover, HF is self-adjoint on D(H0) and bounded below. More precisely,
HI is infinitesimally Kato-bounded with respect to H0.

Proof: H0 is self-adjoint and nonnegative because it is the sum of two commut-
ing, self-adjoint, nonnegative operators. By Proposition 1.3.3 and (1.28), D(HI) ⊃
D(H0), and HI is seen to be symmetric on D(1⊗Hf) ⊃ D(H0) by using (1.28) and
proceeding as in Proposition 1.3.4. Let Ψ ∈ D(H0). We pick a version of q 7→ Ψq of
Ψ, thus Ψq ∈ F for each q ∈ Rd. Proposition 1.3.3 now gives for every q ∈ Rd:

‖HIΨq‖2
F ≤ 2

(∥∥∥∥a∗( %̂e−ikq2ω

√
2ω

)
Ψq

∥∥∥∥2

F
+

∥∥∥∥a( %̂eikq2ω

√
2ω

)
Ψq

∥∥∥∥2

F

)
≤

≤ 2

(
2

∥∥∥∥ %̂2ω
∥∥∥∥2

L2(Rd)

〈Ψq, dΓ(2ω)Ψq〉F +

∥∥∥∥ %̂√
ω

∥∥∥∥2

L2

‖Ψq‖2
F

)
,

and integration over q together with Hp ≥ 0 gives

‖HIΨ‖2
L2(Rd)⊗F ≤ 8

∥∥∥∥ %̂2ω
∥∥∥∥2

L2

〈Ψ, (1⊗Hf)Ψ〉L2(Rd)⊗F + 2

∥∥∥∥ %̂√
ω

∥∥∥∥2

L2

‖Ψ‖2
L2(Rd)⊗F ≤

≤ 8

∥∥∥∥ %̂2ω
∥∥∥∥2

L2

〈Ψ, H0Ψ〉L2(Rd)⊗F + 2

∥∥∥∥ %̂√
ω

∥∥∥∥2

L2

‖Ψ‖2
L2(Rd)⊗F ≤

≤ ε ‖H0Ψ‖2
L2(Rd)⊗F +

(
16 ‖%̂/2ω‖4

L2

ε
+ 2

∥∥∥∥ %̂√
ω

∥∥∥∥2

L2

)
‖Ψ‖2

L2(Rd)⊗F

for each ε > 0. Thus by the Kato-Rellich theorem ([41], Th. X.12), HF is self-adjoint
on D(H0) and bounded below. �
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While the preceding proposition ensures that HF is a well-behaved Hamiltonian,
it says nothing about the existence of eigenfunctions for HF . In fact it it possible
that HF has no eigenfunctions in L2(Rd)⊗F [30]. We will come back to this theme
later on, cf. 1.5.15 and Section 3.1.

1.4 An infinite dimensional Ornstein-Uhlenbeck

process

In this section we provide the probabilistic preparations which are necessary to give
an alternative description of Nelson’s model. We start by giving some basic facts
about Gaussian measures.

Definition 1.4.1 Let X be a locally convex vector space over R, and let X be the σ-
field generated by the continuous linear functionals f ∈ X ′. A Gaussian measure
γ on (X,X ) is a probability measure on (X,X ) such that for each f ∈ X ′, the image
γ ◦ f−1 is a Gaussian measure on R.

It is important to keep in mind that by this very definition, Gaussian measures can
only be defined naturally on a real vector space. Thus to make the connection with
Fock space (which is a complex vector space), we will later study complex-valued
functionals on X instead of complexifying X.

The basic existence theorem for Gaussian measures on Hilbert spaces is [8]

Theorem 1.4.2 Let Φ be a separable, real Hilbert space, a ∈ Φ and A : Φ ⊃
D(A) → Φ a self-adjoint operator in Φ with A > 0.

a) If A−1 is a Hilbert-Schmidt operator, then there exists a Gaussian measure γ
on Φ uniquely characterized by its Fourier transform∫

ei〈φ,f〉Φ dγ(φ) = ei〈a,f〉Φe−
1
2‖A−1f‖2

Φ . (1.32)

b) If A−1 is not a Hilbert-Schmidt operator, then a Gaussian measure on Φ with
Fourier transform (1.32) does not exist.

In case a) of the above theorem, a is called the mean of γ and the bilinear form

Φ× Φ → R, φ, ψ 7→
〈
A−1φ,A−1ψ

〉
Φ

is called the covariance of γ. Sometimes also A−2 is called the covariance operator
of γ.

Since the identity is not a Hilbert-Schmidt operator, Theorem 1.4.2 b) implies
that a Gaussian measure on a Hilbert space with covariance given by the inner
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product of the Hilbert space can not exist. However, given any operator A > 0 with
Hilbert-Schmidt inverse, it is possible to construct a larger Hilbert space carrying
the desired measure:

Theorem 1.4.3 Let K be a separable real Hilbert space, and let A > 0 in K such
that A−1 is Hilbert-Schmidt. Let Φ be the completion of K with respect to the Hilbert
norm

‖φ‖Φ :=
∥∥A−1φ

∥∥
K

∀φ ∈ K.
Then for each a ∈ Φ there exists a unique Gaussian measure γ on Φ such that for
all f ∈ D(A), ∫

Φ

eiφ(f) dγ(φ) = eia(f)e−
1
2
‖f‖2K . (1.33)

Here, for φ ∈ Φ we defined

φ(f) ≡ 〈f, φ〉K = lim
n→∞

〈
Af,A−1φn

〉
K

(1.34)

where (φn) ⊂ K is any sequence converging to φ in the norm of Φ, similarly for
a(f).

Proof: First, for f ∈ D(A), the limit in (1.34) exists, is independent of the chosen
sequence, and φ 7→ φ(f) is continuous with respect to the norm of Φ. This follows
from the Cauchy-Schwarz inequality in K.

Now, A−1 is a Hilbert-Schmidt operator also on Φ. To see this, note that for
an orthonormal basis (ei)i∈N of K consisting of eigenvectors of A−1, the sequence
(Aei)i∈N is an orthonormal basis of Φ, and

∞∑
i=1

〈
Aei, A

−1(Aei)
〉2

Φ
=

∞∑
i=1

〈
ei, A

−1ei
〉2
K

=
∥∥A−1

∥∥2

H.S.,K
<∞.

Now by Theorem 1.4.2 there exists a Gaussian measure γ on Φ with∫
ei〈φ,ψ〉Φ dγ(φ) = ei〈a,ψ〉Φe−

1
2‖A−1ψ‖2

Φ

for each ψ ∈ Φ. From (1.34) it can be easily deduced that for each f ∈ D(A), the
continuous linear form φ 7→ φ(f) is represented by the element A2f ∈ Φ, i.e.

φ(f) =
〈
A2f, φ

〉
Φ

∀φ ∈ Φ.

Here, A2 is defined via the Riesz theorem and approximation like in (1.34). We now
have ∫

eiφ(f) dγ(φ) =

∫
ei〈A

2f,φ〉
Φ dγ(φ) = ei〈A

2f,a〉
Φe−

1
2‖A−1A2f‖2

Φ =

= eia(f)e−
1
2
‖f‖2K ,
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as desired. �
In case f ∈ K \ D(A), φ 7→ φ(f) is not a bounded linear functional on Φ.

However, it has a chance of being an Lp(γ)-function for p <∞.

Lemma 1.4.4 Consider the setting of Theorem 1.4.3 and the natural embedding
K → Φ. If the mean a of γ is an element of K, then for each f ∈ K, the map
φ 7→ φ(f) exists in Lp(γ) for each p with 1 ≤ p <∞. In particular,∫

φ(f)2 dγ(φ) = a(f)2 + ‖f‖2
K . (1.35)

Proof: Let fn → f in K with fn ∈ D(A) for all n. Then (1.33) implies that the
image of γ under φ(fn − fm) is the Gaussian measure with mean a(fn − fm) and
variance ‖fn − fm‖K . Explicit integration with respect to the image measure shows
that φ 7→ φ(fn) is an Lp-Cauchy sequence for each 1 ≤ p < ∞, implying existence
of φ(f) in Lp as well as (1.35). �

We are now ready to construct the infinite-dimensional Ornstein-Uhlenbeck pro-
cess. For this purpose we need to make some extra assumptions on the Hilbert space
K, and indeed we will specialize right away to the case of the Nelson model. Greater
generality can be achieved, but it does not make things more transparent.

Definition 1.4.5 From now on, we will work with the following setup:

(i): ω : Rd → R is measurable with 0 ≤ ω(k) = ω(−k), and ω(k) = 0 only on a set
of Lebesgue-measure zero. This is the same ω we defined in (1.26) and (1.27).

(ii): B is the operator in L2(Rd+1,C) given by

(Bf)(k) =
f̂(k)√

ω(k)2 + κ2
∀f ∈ D(B),

with k = (κ, k), κ ∈ R, k ∈ Rd. By (i), B∗B maps real-valued functions into
real-valued functions, and thus for real-valued f, g ∈ D(B),

〈f, g〉K = 〈Bf,Bg〉L2 =

∫
f̂(k)

1

ω(k)2 + κ2
ĝ(k) dk

defines an inner product on L2(Rd+1,R)∩D(B). The real vector space obtained
by completing this space with respect to 〈., .〉K will be denoted by K.

(iii): Φ is the Hilbert space constructed from K and a positive operator A with
Hilbert-Schmidt inverse as described above. K is considered as a subspace of
Φ in the natural way. γ is the Gaussian measure on Φ with mean 0 and
covariance given by the inner product in K as described in Theorem 1.4.3.
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(iv): B is the operator in L2(Rd,C) with

Bf(k) =
f̂(k)√
2ω(k)

∀f ∈ D(B).

As above, the map

〈f, g〉K = 〈Bf,Bg〉L2 =

∫
f̂(k)

1

2ω(k)
ĝ(k) dk

defines an inner product both on D(B) and on the real vector space L2(Rd,R)∩
D(B). KC will denote the completion of D(B) with respect to this inner prod-
uct, while K will denote the completion of L2(Rd,R)∩D(B). We will also em-
ploy the letter B to denote the Hilbert space isomorphism KC → L2(Rd), f 7→
Bf .

(v): Φ is the Hilbert space constructed from K and a positive operator A with
Hilbert-Schmidt inverse, i.e. the completion of K with respect to the norm

‖g‖Φ =
∥∥A−1g

∥∥
K
, (g ∈ K).

K is considered as a subspace of Φ in the natural way.

Proposition 1.4.6 For t ∈ R let δt denote the Dirac-distribution at t, i.e. δt(f) =
f(t) for all continuous functions f : R → R. If g ∈ K, then δt ⊗ g ∈ K. Moreover,

〈δs ⊗ f, δt ⊗ g〉K =

∫
f̂

1

2ω
e−|t−s|ωĝ dk (1.36)

for all f, g ∈ K.

Proof: Since δ̂t ⊗ g(k) = 1√
2π
eitκĝ(k) with k = (κ, k) as above, we have

〈δs ⊗ f, δt ⊗ g〉K =

∫
ei(t−s)κ

2π(ω2(k) + κ2)
f̂(k)ĝ(k) dk

=

∫
e−|t−s|ω(k)

2ω(k)
f̂(k)ĝ(k) dk ≤ ‖f‖K ‖g‖K . (1.37)

�
From this Proposition and Lemma 1.4.4 it follows that for each t ∈ R and each

g ∈ K,
Φ → R, φ 7→ φt(g) := φ(δt ⊗ g)

exists as a L2(γ)-function. The φt form a Gaussian Markov process, a fact that was
already shown by Nelson [35]. Our aim is to show some sample path properties for
this process, therefore we take a more concrete approach than he did. In particular,
we will specify the state space of the process.
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Theorem 1.4.7 Consider the setup from Definition 1.4.5. For each n ∈ N and
t1 < t2 < . . . < tn ∈ R there exists a unique Gaussian measure Gt1,...,tn on Φn such
that∫

F (φ1(g1), . . . , φn(gn)) dGt1,...,tn(~φ) =

∫
F (φ(δt1 ⊗ g1), . . . , φ(δtn ⊗ gn)) dγ(φ)

(1.38)

for all g1, . . . , gn ∈ D(A) and all integrable F . In the above formula, we wrote ~φ for
(φ1, . . . , φn) ∈ Φn.

Proof: By definition,∫
exp

(
i

n∑
j=1

φ(δtj ⊗ gj)

)
dγ(φ) = exp

(
−1

2

n∑
j,l=1

〈
δtj ⊗ gj, δtl ⊗ gl

〉
K

)
. (1.39)

What we have to show is that the right hand side of (1.39) is the Fourier trans-
form of a (unique) Gaussian measure Gt1,...,tn on Φn. Once this is established, it will
follow from the characterization theorem of the Fourier transform that the images
of γ under φ 7→ (φ(δt1 ⊗ g1), . . . , φ(δtn ⊗ gn) and of Gt1,...,tn under (φ1, . . . , φn) 7→
(φ1(g1), . . . , φn(gn)) are one and the same Gaussian measure, implying (1.38) for
general integrable F . To prove that (1.39) is indeed the Fourier transform of a
Gaussian measure on Φn, we have to show that there exists a Hilbert-Schmidt op-
erator

√
L > 0 on Φn with〈

~φ, L~ψ
〉

Φn
=

n∑
j,l=1

〈
δtj ⊗ A−2φj, δtl ⊗ A−2ψl

〉
K
.

Since we found φ(g) = 〈A2g, φ〉Φ in the proof of Theorem 1.4.3, this will be sufficient.

To find
√
L, let g, h ∈ K and s, t ∈ R, then by by (1.37)

〈δt ⊗ g, δs ⊗ h〉K ≤ ‖g‖K ‖h‖K ,

and thus
n∑

j,l=1

〈
δtj ⊗ A−2gj, δtl ⊗ A−2hl

〉
K
≤ (1.40)

≤
n∑

j,l=1

∥∥A−1gj
∥∥

Φ

∥∥A−1hl
∥∥

Φ
≤ n

∥∥∥ ~A−1~g
∥∥∥

Φn

∥∥∥ ~A−1~h
∥∥∥

Φn
,

where ~g,~h ∈ Φn, ~A−1~g = (A−1g1, . . . , A
−1gn), Φn is equipped with its Hilbert norm.

(1.40) implies the existence of a bounded operator L : Φn → Φn with〈
~φ, L~ψ

〉
Φn

=
n∑

j,l=1

〈
δtj ⊗ A−2φj, δtl ⊗ A−2ψl

〉
K
.
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Obviously, L is symmetric and therefore self-adjoint. Moreover,

C 3 (z1, . . . , zn) 7→
n∑

j,l=1

zj z̄le
−|tj−tl|

is positive definite (see e.g. [45], Lemma 4.4), and thus L > 0 and
√
L exists and

is strictly positive. Furthermore, (1.40) shows that
∥∥∥√L~φ∥∥∥

Φn
≤
√
n
∥∥∥ ~A−1~φ

∥∥∥
Φn

, and

since ~A−1 is Hilbert-Schmidt on Φn,
√
L is also a Hilbert-Schmidt operator. �

The preceding theorem enables us to make the following

Definition 1.4.8 The Φ-valued Ornstein-Uhlenbeck process with mean 0 and co-
variance

Covs,t(f, g) =

∫
f̂(k)

1

2ω(k)
e−|t−s|ω(k)ĝ(k) dk (f, g ∈ K)

is the Gaussian measure G on ΦR with mean 0 and∫
φs(f)φt(g) dG(φ) =

∫
f̂(k)

1

2ω(k)
e−|t−s|ω(k)ĝ(k) dk (f, g ∈ K).

Here, φt denotes the projection of φ ∈ ΦR onto the t-th factor.
The stationary measure of G, i.e. the image of G under the projection φ 7→ φt, is
denoted by G.

Indeed, Theorem 1.4.7 ensures the existence of the “finite”-dimensional distributions
in Φn, while consistency follows directly from (1.38), and thus G exists according to
Kolmogorov’s existence theorem.

We called G an Ornstein-Uhlenbeck process, thus suggesting that it is a Markov
process. This is indeed the case, as we will see now. We start with a formula
describing certain conditional expectations under γ.

Lemma 1.4.9 Let K0 ⊂ K be a closed subspace, let P : K → K0 be the corre-
sponding orthogonal projection, and let FP be the σ-field generated by {φ 7→ φ(f) :
f ∈ K0}. Then for each α ∈ C, f ∈ K,

Eγ(e
αφ(f)|FP )(φ̄) = eαφ̄(Pf)e

α2

2
‖f−Pf‖2K ,

where equality is to be understood in L1(γ).

Proof: First of all, indeed φ 7→ eαφ(f) is in L1(γ) for each f ∈ K, with integral equal
to exp(α2 ‖f‖2

K /2). Now

Eγ

(
eαφ(f)|FP

)
(φ̄) = Eγ

(
eαφ(Pf)eαφ(f−Pf)|FP

)
(φ̄) = eαφ̄(Pf)Eγ

(
eαφ(f−Pf)|FP

)
(φ̄)

= eαφ̄(Pf)Eγ

(
eαφ(f−Pf)

)
= eαφ̄(Pf)e

α2

2
‖f−Pf‖2K . (1.41)
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Equalities in the above equation are in L2(γ), and the third equality is due to the
fact that independence with respect to γ is equivalent with orthogonality in L2(γ).

�
We now fix a notation that we will use throughout: For an interval I ⊂ R, FI is

the σ-field over ΦR generated by {φt(f) : t ∈ I, f ∈ K}.

Proposition 1.4.10 G is the path measure of a Markov process with state space Φ,
where the Markov property holds with respect to the canonical filtration (F[−∞,t])t∈R.

Proof: Denote by K]−∞,0] the closed subspace of K generated by {δt⊗ f : t ≤ 0, f ∈
K}, and by K{0} the closed subspace generated by {δ0 ⊗ f : f ∈ K}. Write P]−∞,0]

and P{0} for the corresponding projections. We claim that for each t ≥ 0 and each
g ∈ K,

P]−∞,0](δt ⊗ g) = δ0 ⊗ e−
t
2
|B|−2

g = P{0}(δt ⊗ g). (1.42)

Indeed, δ0 ⊗ e−
t
2
|B|−2

g ∈ K]−∞,0],

̂(|B|−2f) = ((B∗B)−1f)b= 2ωf̂ ,

consequently (exp(− t
2
|B|−2)f)b= e−tωf̂ , and for each s ≤ 0,

〈δs ⊗ f, δt ⊗ g〉K =

∫
1

2ω
e−|t−s|ωf̂ ĝ dk =

=

∫
1

2ω
e−|s|ωf̂

(
e−

t
2
|B|−2

g
)b
dk =

=
〈
δs ⊗ f, δ0 ⊗ e−

t
2
|B|−2

g
〉

K
.

From this we get

〈F, δt ⊗ g〉K =
〈
F, δ0 ⊗ e−

t
2
|B|−2

g
〉

K
∀F ∈ K]−∞,0]

by linearity and approximation, and thus the first equality in (1.42) is shown. The
second equality there now follows from the fact that δ0 ⊗ e−

t
2
|B|−2

g is not only in
K]−∞,0] but even in K{0}.

Now by Lemma 1.4.9 we have

Eγ

(
eαφ(δt⊗g)

∣∣∣FP]−∞,0]

)
(φ̄) = eαφ̄(P]−∞,0]δt⊗g) exp

(
α2

2

∥∥(1− P]−∞,0])δt ⊗ g
∥∥2

K

)
,

and (1.38) gives

EG

(
eαφt(g)

∣∣∣F]−∞,0]

)
(φ̄) = eφ̄0(e−

t
2 |B|

−2
g) exp

(
α2

2

〈
g, (1− e−t|B|

−2

g
〉
K

)
∈ F{0}
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for each t ≥ 0. F{0} and F]−∞,0] below denote the σ-fields generated by the point
evaluations for the corresponding points t, cf. Chapter 2 for more explanation.
Again by approximation, we find

EG

(
F (φ)

∣∣∣F]−∞,0]

)
∈ F{0}

for all integrable, F[0,∞[-measurable functions, proving our claim. �
The method used in the above proof to calculate conditional expectations will be

used again in Chapter 3. We should also note that the Markov property alternatively
follows directly from (1.38) and the results in [35].

The last task in this section is to establish continuity of sample paths for G. The
following constitutes a refinement of results in [30].

Proposition 1.4.11 In addition to the setup from Definition 1.4.5, assume that
|B|−1A−1 is a Hilbert-Schmidt operator on K. Then for G-almost every φ ∈ ΦR, the
path R → Φ, t 7→ φt is continuous.

Proof: Using Kolmogorov’s criterion for continuity (see e.g. [26]) we only need to
show that ∫

‖φs − φt‖4
Φ dG(φ) ≤ C|t− s|2 (1.43)

for some C > 0. Let (ei)i∈N be an orthonormal basis of K consisting of eigenvectors
of A, with Aei = λiei. Then (λiei)i∈N is an orthonormal basis of Φ, and thus for
φt ∈ Φ,

‖φt‖4
Φ =

(
∞∑
i=1

λ2
i 〈ei, φt〉

2
Φ

)2

=

=
∞∑

i,j=1

λ2
iλ

2
jφt(A

−2ei)
2φt(A

−2ej)
2 =

∞∑
i,j=1

λ−2
i λ−2

j φt(ei)
2φt(ej)

2.

Note that φt 7→ φt(ei) = 〈A2ei, φt〉Φ is defined for every φt ∈ Φ since ei ∈ D(A2).
By monotone convergence and the Cauchy-Schwarz inequality,∫

‖φs − φt‖4
Φ dG(φ) ≤

(
∞∑
i=1

λ−2
i

(∫
((φt − φs)(ei))

4 dG(φ)

)1/2
)2

= (∗).

By (1.38) and integration with respect to the Gaussian image measure,(∫
((φt − φs)(ei))

4 dG(φ)

)1/2

=

(∫
(φ((δt − δs)⊗ ei))

4 dγ(φ)

)1/2

=

=
√

3 ‖(δt − δs)⊗ ei‖2
K = 2

√
3

∫
1− e−|t−s|ω(k)

2ω(k)
|êi(k)|2 dk = (∗∗).
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Since |B|−1A−1 is bounded, ei ∈ D(|B|−1) for all i, and

(∗∗) =
√

3

∫
1− e−|t−s|ω(k)

ω(k)

| ̂|B|−1ei(k)|2

2ω(k)
dk ≤

√
3|t− s|

∥∥|B|−1ei
∥∥2

K
.

The last inequality holds because the first fraction in the integral is bounded by
|t− s|. We conclude

(∗) ≤ 3|t− s|2
(

∞∑
j=1

λ−2
j

∥∥|B|−1ej
∥∥2

K

)2

=

= 3|t− s|2
(

∞∑
j=1

∥∥|B|−1A−1ej
∥∥2

K

)2

= 3|t− s|2
∥∥|B|−1A−1

∥∥4

H.S.
,

finishing the proof. �
Since we have considerable freedom in choosing our operator A, it is no problem

to find A such that both A and A|B| have Hilbert-Schmidt inverse. Indeed, take an
orthonormal basis (ej) of K contained in D(|B|−1) and define

Aej = jmax{
∥∥|B|−1ej

∥∥
K
, 1}ej.

Then ‖|B|−1A−1ej‖K ≤ 1/j and ‖A−1ej‖K ≤ 1/j, showing that both A and A|B|
have Hilbert-Schmidt inverse.

1.5 Nelson’s model in function space

We will now use the Gaussian process from the previous section to obtain a unitarily
equivalent representation of HF as an operator in L2(P0 ⊗ G). To do so, we will
use an isomorphism between F and L2(G), and since F is a complex vector space,
we also need to consider L2(G) as a complex space. For f ∈ KC, f = g + ih with
g, h ∈ K, we define

φ(f) := φ(g) + iφ(h),

where φ(g) and φ(h) are as in Lemma 1.4.4. For f, g ∈ KC, we find

〈φ(f), φ(g)〉L2(G) =

∫
φ(f)φ(g) dG(φ) =

∫
BfBg dk = 〈f, g〉KC

. (1.44)

To introduce the isomorphism mentioned above, we need the following functions:



1.5. NELSON’S MODEL IN FUNCTION SPACE 21

Definition 1.5.1 Let f, f1, . . . , fn ∈ KC. The Wick polynomial of order n is the
L2(G)-function defined recursively by

:φ(f)0: = 1, (1.45)

:φ(f): = φ(f), (1.46)

:φ(f1) · · ·φ(fn): = :φ(f1) · · ·φ(fn−1): φ(fn)−

−
n−1∑
i=1

(∫
φ(fi)φ(fn) dG(φ)

)
:
n−1∏
j 6=i

φ(fj): . (1.47)

1.5.2 Remark:

a) Definition 1.5.1 has the virtue of being fairly explicit, and we will need es-
pecially (1.47) later on. However, more insight in the significance of Wick
polynomials is gained by defining them as follows: Let Pol(n) be the closed
subspace of L2(G) spanned by the polynomials in φ(f), f ∈ K of degree ≤ n.
Let Π(0) = Pol(0) = 1, and let Π(n) be the L2(G)-orthogonal complement of
Π(n − 1) in Pol(n), i.e. Pol(n) =

⊕n
k=0 Π(k) for each n. The Wick polyno-

mial :φ(f1) . . . φ(fn): is then defined as the orthogonal projection in L2(G) of
φ(f1) . . . φ(fn) onto Π(n). Thus the Wick polynomials arise from the ordinary
polynomials by an Gram-Schmidt orthonormalization procedure. Equivalence
of the above description to Definition 1.5.1 can be shown by using Hermite
polynomials [22].

b) Of course, the G we use in Definition 1.5.1 plays no special role there and
can be replaced by another Gaussian measure. However, the coefficients of
the Wick polynomials do depend on the Gaussian measure that is used, a
dependence that is suppressed in the notation.

c) In (1.47),
∫
φ(fi)φ(fj) dG and not 〈φ(f), φ(g)〉L2(G) is used. At first glance,

the latter choice might seem more natural, but since the scalar product is
antilinear in the first factor, the Wick polynomials would then not be n-linear
in the fi, i.e. would not even be polynomials any more.

d) It is also possible to express (1.47) using the scalar product in KC, namely

:φ(f1) · · ·φ(fn): = :φ(f1) · · ·φ(fn−1): φ(fn)−
n−1∑
i=1

〈
f̄i, fn

〉
KC

:
n−1∏
j 6=i

φ(fj): .

(1.48)
Note that the usual complex conjugation f 7→ f̄ is in fact a conjugation
in KC, since

〈
f̄ , g
〉
KC

= 〈f, ḡ〉KC
. This can be seen either by using (1.44)

with f̄ instead of f , or directly by virtue of the fact that B∗B maps real



22 CHAPTER 1. NELSON’S MODEL

functions into real functions. Another conjugation on KC is given by f ∗ =
B−1Bf , i.e. 〈f ∗, g〉KC

=
〈
Bf,Bg

〉
L2(Rd)

. In contrast to f̄ , f ∗ continues to be

a conjugation when we drop the condition that B∗B must map real functions
into real functions, and for this reason may be more natural at first glance.
However, for our purposes f ∗ is the wrong choice.

The following proposition is essentially a restatement of Remark 1.5.2 a). A proof
can be found in [22].

Proposition 1.5.3

a) For n,m ∈ N and f1, . . . , fn, g1, . . . , gn ∈ KC, we have∫
:φ(f1) . . . φ(fn): :φ(g1) . . . φ(gm):dG(φ) = δn,m

∑
π∈Π(n)

〈
f̄1, gπ(1)

〉
KC
· · ·
〈
f̄n, gπ(n)

〉
KC
,

(1.49)
where Π(n) is the set of all permutations on {1, . . . , n}.

b) The set { :φ(f1) · · ·φ(fn): |f1, . . . , fn ∈ D(A), n ∈ N} is total in L2(G).

Now if we remember Proposition 1.3.5 and compare (1.49) with (1.14) and (1.23),
we are led to

1.5.4 The Wiener-Itô-Segal isomorphism: Define

θ : L2(G) 3 :φ(f1) . . . φ(fn): 7→
√
n!(Bf1⊗̂ . . . ⊗̂Bfn) ∈ F (n),

and extend by linearity and density. Then θ : L2(G) → F is an isomorphism, the
Wiener-Itô-Segal isomorphism.

We now investigate how the various Fock space operators transform under θ. By
Proposition 1.5.3 b), we may restrict our attention to their action on Wick polyno-
mials.

Proposition 1.5.5 Let f1, . . . , fn ∈ K, g ∈ L2. Then

θ−1Nθ :φ(f1) . . . φ(fn): = n :φ(f1) . . . φ(fn): , (1.50)

θ−1a∗(g)θ :φ(f1) . . . φ(fn): = :φ(f1) . . . φ(fn)φ(B−1g): , (1.51)

θ−1a(g)θ :φ(f1) . . . φ(fn): =
n∑
i=1

〈
B−1ḡ, fi

〉
KC

:
n−1∏
j 6=i

φ(fj): . (1.52)

Let L be an operator in L2(Rd,C) such that Bf1, . . . , Bfn ∈ D(L). Then the Wick
polynomial :φ(f1) . . . φ(fn): is in the domain of the operators below, and

θ−1Γ(L)θ :φ(f1) . . . φ(fn): = :φ(B−1LBf1) . . . φ(B−1LBfn): , (1.53)

θ−1dΓ(L)θ :φ(f1) . . . φ(fn): =
n∑
i=1

:φ(B−1LBfi)
n∏
j 6=i

φ(fj): . (1.54)
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Proof: All the proofs are straightforward chasing of definitions. As an example, we
show (1.52):

θ−1a(g)θ :φ(f1) . . . φ(fn): =
√
n!a(g)(Bf1⊗̂ . . . ⊗̂Bfn) =

=
√
n!θ

1√
n

n∑
i=1

〈ḡ, Bfi〉L2

⊗̂
j 6=i

Bfj =

=
n∑
i=1

〈
B−1ḡ, fi

〉
KC

:
n∏
j 6=i

φ(fj): .

�

Corollary 1.5.6 Let g ∈ L2(Rd,C) be the B-image of a real-valued function, i.e.
et B−1g be real valued. Then

θ−1(a(ḡ) + a∗(g))θ :φ(f1) . . . φ(fn): = :φ(f1) . . . φ(fn): φ(B−1g).

Proof: By assumption, B−1 ¯̄g = B−1g = B−1g and the claim now follows from (1.51),
(1.52) and (1.47). �

In order to write down the Nelson Hamiltonian in function space, we need one
last ingredient: HF is an operator in L2(Rd) ⊗ F , and since we up to now only
have the isomorphism θ : F → L2(G), we still need to transform the first factor. We
could of course use the identity there, but will chose the ground state transform from
Appendix A.2 instead. This has the benefit that the transformed Hamiltonian will
be the sum of the generator of a stochastic process and a multiplication operator.

Recall that the ground state transform is given by

ψ0 : L2(N0) ≡ L2(ψ2
0 dx) → L2(Rd), f 7→ ψ0f,

where ψ0 is the strictly positive, L2-normalized ground state of Hp. From now on,
we will always use N0 to denote the measure ψ2

0dx. Moreover, the measure N0 ⊗ G
will be denoted by P0.

We write

Θ ≡ ψ0 ⊗ θ : L2(P0) → L2(Rd)⊗F ,

and define the Nelson Hamiltonian in function space by

H := Θ−1HFΘ.

By construction, H is unitarily equivalent to HF , and like the latter is a sum of
three terms. We now give the action of H on the Wick polynomials, investigating
each term separately.
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Proposition 1.5.7 Let f1, . . . , fn ∈ K, g ∈ L2(N0). Whenever the fi and g are in
the domains of the operators appearing below,

(Θ−1(Hp ⊗ 1)Θ)(g⊗ :φ(f1) . . . φ(fn): )=Lg⊗ :φ(f1) . . . φ(fn): , (1.55)

(Θ−1(1⊗Hf)Θ)(g⊗ :φ(f1) . . . φ(fn): )=g ⊗
n∑
i=1

:φ

(
1

2
|B|−2fi

) n∏
j 6=i

φ(fj): , (1.56)

(Θ−1HIΘ)(g⊗ :φ(f1) . . . φ(fn): )(q)=g(q) :φ(f1) . . . φ(fn): φ(%q), (1.57)

where %q = %(.− q) and Lg = −1
2
∆g −

〈
∇ψ0

ψ0
,∇g

〉
Rd
.

Proof: (1.55) comes from Appendix A.2. (1.56) follows from (1.29), (1.54) and the
equalities 2ω(k)f(k) = (BB∗)−1f and B−1(BB∗)−1B = |B|−2. For (1.57), note that
HI = a∗(B%q) + a(B%q) and that B%q is the B-image of the real-valued function %q,
and use Corollary 1.5.6. �

In [4], φ ∗ % is used instead of φ(%q). We avoid this notation, because f ∗ g
usually denotes convolution with respect to Lebesgue measure, i.e. f ∗ g(x) =∫
f(x− y)g(y) dy, while φ(%q) = 〈φ, %q〉K .
To complete the comparison between this section and the previous one, note that

condition (1.28) in the language of this section reads % ∈ K and |B|% ∈ K, and that
by the choice of K we have made, this is also true for %q with arbitrary q ∈ Rd.

The next step in our program is to show that θ−1HFθ is the generator of the
Ornstein-Uhlenbeck process G. For this purpose, it is convenient to introduce yet
another class of functions in L2(G).

Definition 1.5.8 The Wick exponential corresponding to f ∈ KC is given by

:exp(φ(f)): =
∞∑
n=0

1

n!
:φ(f)n: .

Like Wick polynomials, Wick exponentials have many nice properties.

Proposition 1.5.9 Let f, g ∈ KC. Then

a) :exp(φ(f)): = exp(φ(f))e
− 1

2〈f̄ ,f〉KC ,

b) 〈 :exp(φ(f)): , :exp(φ(g)): 〉L2(G) = e〈f,g〉KC .

c) For a self-adjoint operator L in L2(Rd) with f ∈ D(B−1LB),

θ−1Γ(L)θ :exp(φ(f)): = :exp(φ(B−1LBf)): .
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d) For a self-adjoint operator L in L2(Rd) with g ∈ D(B−1LB),〈
:exp(φ(f)): , θ−1dΓ(L)θ :exp(φ(g)):

〉
L2(G)

=
〈
f,B−1LBg

〉
KC
e〈f,g〉KC .

e) The set { :exp(φ(f)): : f ∈ D(A)} is total in L2(G).

Proof: b), c) and d) follow by checking definitions. a) is a consequence of the
relationship of Wick polynomials with Hermite polynomials, and e) is an application
of the Stone-Weierstrass theorem. For details see [22]. �

Theorem 1.5.10 The operator θ−1Hfθ is the generator of the process G.

Proof: According to Proposition 1.5.9 a), for f, g ∈ K and t > 0 we have

〈 :exp(φ0(f)): , :exp(φt(g)): 〉L2(G) = e−
1
2
(‖f‖2K+‖g‖2K)

∫
exp(φ0(f) + φt(g)) dG =

= e−
1
2
(‖f‖2K+‖g‖2K) exp

(
1

2
‖δ0 ⊗ f + δt ⊗ g‖2

K

)
= exp

(〈
f, e−

t
2
|B|−2

g
〉
K

)
.

Thus the action of the Dirichlet form E corresponding to G on the Wick exponentials
is given by

E( :exp(φ0(f)): , :exp(φ0(g)): ) =
d

dt
〈 :exp(φ0(f)): , :exp(φt(g)): 〉L2(G)

∣∣∣
t=0

=

=
d

dt
exp

(〈
f, e−

1
2
t|B|−2

g
〉
K

) ∣∣∣
t=0

=

= −
〈
f,

1

2
|B|−2g

〉
K

e〈f,g〉K ,

By 1.5.9 d), also

〈
:exp(φ0(f)): , θ−1Hfθ :exp(φ0(g)):

〉
L2(G)

=

〈
f,

1

2
|B|−2g

〉
K

e〈f,g〉K .

Since the span of the Wick exponentials is dense, it follows that θ−1Hfθ is the
generator of the Dirichlet form corresponding to G, hence the generator of the process
G. �

The proof of the last theorem also allows us to calculate the action of the tran-
sition semigroup Pt corresponding to G on the Wick exponentials as

Pt :exp(φ(f)): = :exp(φ(e−
t
2
|B|−2

f)): .
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Let us pause to summarize what we have achieved so far. Write N0 for the path
measure of the P (φ)1-process corresponding to Hp and put

P0 = N0 ⊗ G,
P0 = N0 ⊗ G,

H0 = Θ−1(Hp ⊗ 1 + 1⊗Hf)Θ,

H% = Θ−1HIΘ.

We have seen that H0 is the generator of the Markov process with path measure
P0 and stationary measure P0 on the state space Rd × Φ. H% is a multiplication
operator in L2(P0), and by Proposition 1.3.8, H% is infinitesimally bounded with
respect to H0. These are the ingredients needed to prove

Theorem 1.5.11 The Feynman-Kac-Nelson formula: Let V be a real valued
element of L2(P0), and write V for the operator of multiplication with V as well.
Suppose that V is Kato-bounded with respect to H0 with bound < 1, i.e. that there
exist a < 1, b > 0 such that ‖VF‖L2(P0) ≤ a ‖H0F‖L2(P0) + b ‖F‖L2(P0). Then for all

F,G ∈ L2(P0), t ≥ 0,〈
F, e−t(H0+V)G

〉
L2(P0)

=

∫
F (q0, φ0)e

−
R t
0 V(qs,φs) dsG(qt, φt) dP0(q, φ). (1.58)

Proof: Our proof closely follows the one given in [45] for the finite dimensional
version of (1.58), the Feynman-Kac formula. By the Kato-Rellich theorem, H0 + V
is self-adjoint on D(H0) and bounded below, hence e−t(H0+V) exists. To prove (1.58),
we will use Trotters formula on the left hand side and integral convergence theorems
on the right hand side. Explicitly, for n ∈ N we have〈
F,
(
e−

t
n
H0e−

t
n
V)
)n
G
〉
L2(P0)

=

∫
F (q0, φ0) exp

(
− t

n

n∑
j=1

V(q tj
n
, φ tj

n
)

)
G(qt, φt) dP0,

(1.59)
where on the right hand side of (1.59) we used the fact that exp(−tH0) is the
transition semigroup of P0. Let us now for the moment assume that V is continuous
from Rd × Φ to R and bounded. By path continuity, it follows that also t 7→
V(qt, φt) is continuous for P0-almost every path, and thus the Riemann sum in (1.59)
converges to the integral in (1.58) P0-almost everywhere. Moreover, for F,G ∈ L∞,
the integrands in (1.59) are bounded by ‖F‖∞ ‖G‖∞ exp(t ‖V‖∞), and (1.58) follows
by Trotters formula on the left hand side and dominated convergence on the right
hand side of (1.59).

Now consider V ∈ L∞. We approximate V pointwise P0-almost everywhere
by bounded continuous functions Vn. (1.58) holds for each of the approximating
functions, and we only have to show that both sides converge as n → ∞. For the
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left hand sides, note that H0 + Vn converges to H0 + V in strong resolvent sense.
Indeed, VnF → VF in L2(P0) for each F ∈ L2(P0) by dominated convergence, and
thus

((H0 + Vn + i)−1 − (H0 + V + i)−1)F = (1.60)

= (H0 + Vn + i)−1(Vn − V)(H0 + V + i)−1F
n→∞−→ 0.

Here we used that (H0 + Vn + i)−1 is bounded uniformly in n. This implies strong
convergence of all bounded continuous functions of the corresponding operators.
Now H0 + Vn and H0 + V are bounded below, say H0 + Vn ≥ −c, H0 + V ≥ −c.
Thus

e−t(H0+Vn) = etce−t|H0+Vn+c| n→∞−→ etce−t|H0+V+c| = e−t(H0+V)

in the sense of strong convergence. This shows convergence of the left hand side in
(1.58). For the right hand side, first note that for each fixed t ≥ 0,

P0

(
Vn(qt, φt) 6→ V(qt, φt)

)
= 0

by assumption. Two applications of Fubini’s theorem imply that for P0-almost all
(q, φ),

Vn(qs, φs) → V(qs, φs) Lebesgue-almost everywhere on [0, t].

By dominated convergence we now have∫ t

0

Vn(qs, φs) ds→
∫ t

0

V(qs, φs) ds

P0-almost everywhere, and another application of dominated convergence ensures
convergence at the right hand side of (1.58).

In the last step, we approximate general V by Vn,m = min{max{V ,−n},m}.
Now we let first n and then m go to ∞ and again prove convergence of both sides of
(1.58). The only differences to the previous step is that we now always use monotone
convergence instead of dominated convergence, and that we now use (H0 + V +
i)−1F ∈ D(H0 + V) ⊂ D(V) in (1.60). Finally, general F,G ∈ L2(P0) are obtained
from bounded ones by monotone convergence together with positivity properties of
et(H0+V) and the exponential function. �

Corollary 1.5.12 For F,G ∈ L2(P0), t > 0, we have

〈
F, e−tHG

〉
L2(P0)

=

∫
F (q0, φ0)e

−
R t
0 φs(%q(s)) dsG(qt, φt) dP0(q, φ). (1.61)

Here, we wrote q(s) instead of qs in the exponent for the sake of notational aesthetics.
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Proof: (φs, qs) 7→ φs(%q(s)) is real-valued and by Proposition 1.3.8 fulfills the hypoth-
esis of Theorem 1.5.11. �

(1.61) is the key to the strategy described in the introduction: If we suppose
that H has a unique ground state Ψ, i.e. an eigenvector whose eigenvalue λ is the
bottom of the spectrum of H, then

ΨT := e−T (H−λ)F
T→∞−→ 〈Ψ, F 〉P0

Ψ.

(1.61) describes ΨT in a fairly explicit way, and thus properties of Ψ can be studied
by investigating ΨT via (1.61) and taking the limit. This is the strategy of our
estimates in Chapter 3.

An especially interesting feature of (1.61) is that the exponent on the right hand
side is linear in φ. If F and G are independent of φ, this enables us to carry out the
G-integration explicitly, as stated in

Proposition 1.5.13 Let f, g ∈ L2(N0). We also write f, g for the elements f ⊗
1, g ⊗ 1 ∈ L2(P0). For each T > 0,

〈
f, e−THg

〉
L2(P0)

=

∫
f(q0) exp

(
−
∫ T

0

ds

∫ T

0

dtW (qs − qt, s− t)

)
g(qT ) dN0(q),

(1.62)
where

W (q, t) = −1

2

∫
|%̂(k)|2

2ω(k)
cos(k · q)e−ω(k)|t| dk (1.63)

and k · q denotes scalar product in Rd.

Proof: For each path q = {qt : t ∈ R} ∈ C(R,Rd), the map

Iq(φ) =

∫ T

0

φs(%q(s)) ds

is in L2(G) and∫
(Iq(φ))2 dG(φ) =

∫ T

0

ds

∫ T

0

dt

∫
φs(%q(s))φt(%q(t)) dG(φ) =

=

∫ T

0

ds

∫ T

0

dt

∫
%̂q(s)%̂q(t)

2ω
e−|t−s|ω(k) dk = −2

∫ T

0

ds

∫ T

0

dtW (qt − qs, t− s).

Moreover, Iq is the L2(G)-limit of continuous linear functionals on C(R,Φ), thus the
image of G under Iq is the Gaussian measure on R with mean 0 and covariance given
by the above equation. It follows that∫

e−Iq(φ) dG(φ) = exp

(
1

2

∫
I2
q dG

)
= exp

(
−
∫ T

0

ds

∫ T

0

dtW (qs − qt, s− t)

)
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for each path q, and the fact that P0 = N0 ⊗ G and Fubini’s Theorem imply the
claim. �

In the above form, the Feynman-Kac-Nelson formula was proven by Nelson in
[32] by direct approximation of the interaction.

Like many models of quantum field theory, Nelson’s model possesses some un-
comfortable features concerning existence and well-definedness of certain objects. If
we did not encounter any of these problems so far, this is simply because we ruled
them out from the start by imposing conditions on %. We will now discuss them,
restricting to the physically important case ω(k) = |k| and d = 3.

1.5.14 Ultraviolet divergence: This type of divergence appears when we try to
put % = δ0, i.e. to make q a point charge instead of a smeared-out charge distribu-
tion. Physically, a point charge is desirable in order to obtain Lorentz invariance.
Moreover, often many explicit calculations can be done that were impossible or much
more difficult before. In the point charge case %̂ = 1, and obviously neither % ∈ K
nor |B|% ∈ K, since neither 1/|k| nor 1/|k|2 are integrable on R3. Thus HI resp. H%

can not be defined in any rigorous way.
However, in a famous article Nelson [33] showed how to deal with the situation.
First, an ultraviolet cutoff κ is introduced, i.e. one puts %̂κ = 1{|k|≤κ}. With this %̂κ,
(1.28) is fulfilled, and one writes Hκ for the respective Hamiltonian. Nelson then
shows the existence of an operator Ĥ and numbers Eκ with Eκ →∞ as κ→∞ such
that eit(Hκ−Eκ) → eitĤ for all t > 0 as κ → ∞. Thus although limκ→∞Hκ does not
exist, the reason is just the divergence of inf specHκ to −∞. Once this is repaired
by subtracting the constants Eκ, the divergence disappears.
The name ‘’ultraviolet divergence’ comes from the Fock space picture. Since the
non-integrability of 1/|k| is due to the large |k| behavior of 1/|k|, it is the bosons
with high energies which cause the trouble. When making the ultraviolet cutoff, we
suppress (cut off) the interaction of the charge with such high-energy (ultra-violet)
bosons.

1.5.15 Infrared divergence: Just like ultraviolet divergence comes from the
interaction of the charge with high energy bosons, infrared divergence comes from
interaction with low energy bosons. However, the problems here are slightly more
subtle than they were above. In particular, it is not necessary to cut off the interac-
tion with low energy bosons in order to get a well-defined Hamiltonian, since 1/|k|
and 1/|k|2 are integrable around k = 0 in three dimensions. However, if we take e.g.
%̂κ = 1{|k|≤κ} as above, then under some technical assumptions it has been shown in
[30] that HF has no ground state in L2(R3)⊗F . This means there exists no station-
ary state at all. On the other hand, if we assume %̂/|k|3/2 ∈ L2(Rd) resp. |B|2% ∈ K
in addition to our other conditions, then there does exist such a ground state [48].
This means that we have to cut off the interaction of the particle with low-energy
photons to obtain a ground state in Fock space. We have a strong interest in having
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such a ground state, since the whole Chapter 3 deals with its properties. We will
thus assume an infrared cutoff condition in Chapter 3.
One consequence of the infrared cutoff is that we now assume 0 = %̂(0) =

∫
%(x) dx.

This means that we only deal with particles that have total charge zero, a physically
slightly unsatisfactory situation. However, the reason for the infrared divergence lies
more in the choice of the mathematical description than in the physics of the model.
When we introduced the Fock space, we ‘arbitrarily’ imposed conditions on the
number of bosons for all the vectors in Fock space in order to define a norm on
F . When we introduced the Hamiltonian in function space, we ‘arbitrarily’ chose
the mean zero for the Ornstein-Uhlenbeck process G. This now turns out to have
been the wrong choice: although H does not have a ground state in L2(N0 ⊗ G), it
does have a ground state in L2(N0 ⊗ G̃), where G̃ is a Gaussian measure with mean
sufficiently different from zero to be singular with respect to G. Details can be found
in [31] and in Section 3.1



Chapter 2

Gibbs measures relative to
Brownian motion

2.1 Definitions, Examples and finite volume

Gibbs measures

The right hand sides of (1.58), (1.61) and (1.62) have a structure similar to that
of a Gibbs measure: a (reference-) measure is modified by a density given by the
exponential of some (energy-) functional. Gibbs measures play a central role in
statistical mechanics, and a well-established theory exists [18]. However, there is one
crucial difference between the cases covered by that theory and our context: while
normally, the reference measure is a countable product of measures on the state
space of the system, the reference measures in (1.58), (1.61) and (1.62) are measures
on spaces of continuous functions and can not be written as product measures.

In order to discuss similarities and differences of our measures to the ones covered
by the classical theory of Gibbs measures, we introduce an example from the latter
theory that has the virtue of being fairly close to our models.

2.1.1 A one-dimensional system of unbounded spins: Let ν̃0 be a proba-
bility measure on Rd, and ν̃ = ν̃⊗Z

0 the countable product on Ω = (Rd)Z. Consider
V : Rd → R and W : Rd × Rd × R+ → R and suppose that

ZN =

∫
exp

(
−

N∑
i=−N

V (xi)−
N∑

i,j=−N

W (xi, xj, |i− j|)

)
dν̃(x) <∞. (2.1)

Then

dν̃N(x) =
1

ZN
exp

(
−

N∑
i=−N

V (xi)−
N∑

i,j=−N

W (xi, xj, |i− j|)

)
dν̃(x) (2.2)

31
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is a probability measure on Ω.
A good way to think about this measure is to view it as describing a chain of

particles with positions in Rd: Imagine Z as a straight line of equidistant dots, and
attach one Rd to each of them. In each of the Rd’s, there is exactly one particle
at position xi. Since the summations in (2.1) and (2.2) only go from −N to N , it
is even better to think of just 2N + 1 particles, the rest of the Rd’s being added
only for later mathematical convenience. The particles are at random positions,
and the joint distribution of their positions is ν̃N . ν̃ is called the reference measure
of the system. Without interaction (i.e. for V = W = 0), each of the particles
would just be distributed according to ν̃0 independently. V only plays a trivial
role in this model: e−V could as well have been incorporated into the reference
measure from the very beginning. W , on the other hand, is a more interesting object,
leading to an interaction between different particles in the chain. For example,
W (x, y, |t|) = |x−y|2e−|t| would encourage particles from sites close to each other to
remain in the same region of Rd, while hardly affecting particles that are on distant
sites of the lattice Z.

A system like (2.2) is called one-dimensional system of unbounded spins. Here,
‘one-dimensional’ refers to the lattice Z (as opposed to Zn), and the reasons for
calling the positions xi ‘spins’ are historical. V is called single site potential, and
W pair potential. In the theory of Gibbs measures, the potentials are regarded as
the central objects, and ν̃N is called finite volume Gibbs measure for V and W .
‘Volume’ here refers to [−N,N ] ⊂ Z.

If we want to describe a chain of infinite length, the most natural thing is to
take N to infinity in (2.2) and hope for some type of convergence. However, there is
considerable freedom in the way we can try to take this limit. (2.2) is made so that
the ends x−N and xN of the chain are just left to float around freely, but instead we
could also have forced them to stay e.g. in x̄ ∈ Rd. Different ways of fixing the end of
the chain might result in different limiting measures, especially when the interaction
W is very long-ranged. It has turned out that instead of investigating all possible
limits, it is advantageous to characterize the set of limiting measures in a direct
way involving conditional expectations. This characterization is known as DLR
(Dobrushin-Lanford-Ruelle) equations. We will not write down the corresponding
formulas here: they will appear later in the context of (1.58), (1.61) and (1.62), and
one-dimensional systems of unbounded spins are only used for comparison with those
cases anyway. A comprehensive account of lattice Gibbs measures is [18], which in
the introduction also contains a nice discussion on motivations for studying Gibbs
measures and on their physical significance, going far beyond what we have done
here.

Formally, we can try to derive systems like (1.62) from those given in (2.2) by
simply replacing Z with R and all the sums with integrals. As a reference measure,
however, a product measure on (Rd)R is not a very sensible object to look at. With
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its manifestly discontinuous paths, even the existence of the integrals in the exponent
would in general fail. An alternative choice for a reference measure that still retains
a fair amount of independence between different sites is the measure of a reversible
Markov process; in some cases, we will also allow the (infinite mass) Wiener measure
as a reference measure, and it was this choice that motivated the name ‘Gibbs
measures relative to Brownian motion’.

An interesting consequence of our choice of a Markov process as a reference
measure is that now we have to deal with something like an ‘infinitesimal potential’
in addition to V and W . It is this potential that forces the paths to be continuous.
If we think in the picture of the chain of particles developed above, the chain now
has become a continuous string, and the infinitesimal potential prevents the string
from breaking apart.

In the same way as Brownian motion arises from the random walk by a scaling
limit, Gibbs measures relative to Brownian motion arise from lattice Gibbs measures
when the lattice spacing goes to zero. The infinitesimal potential is then the limit
of a nearest neighbor potential, a fact that is used for proving many of the results
in [38].

Let us now give some precise definitions. In the view of (1.58), Rd as a state
space will not be large enough.

Definition 2.1.2 Let X be a separable Hilbert space, equipped with the σ-field gen-
erated by the continuous linear forms. A reference measure is the measure ν of a
reversible Markov process with continuous paths and state space X. In case X = Rd,
we also allow the (infinite mass) Wiener measure as a reference measure. Wiener
measure is the unique measure W on C(R,Rd) with∫

f1(qt1) · · · fn(qtn)dW(q) =
〈
f1, e

−|t2−t1|HWf2 . . . e
−|tn−tn−1|HWfn

〉
L2(Rd)

for all f1, . . . , fn ∈ L2(Rd) ∩ L∞(Rd), t1 < . . . < tn, and where HW = −1
2
∆.

We assumed some regularity of the state space X as well as path continuity in
order to ensure the existence of regular conditional expectations with respect to the
natural σ-fields induced by the point evaluations [13]. While it might be possible to
live without regular conditional expectations, it would make life (and our formulas)
much more inconvenient and is thus best avoided.

We need to introduce some more

2.1.3 Notation: For I ⊂ R, FI is the σ-field over C(R, X) generated by the
point evaluations with points in I. For T > 0, we write FT instead of F[−T,T ]

and TT instead of F[−T,T ]c . Beware that FT is used differently by many authors,
especially in the context of Markov processes, where it denotes F[0,T ] or F]−∞,T ]. We
sometimes write f ∈ FI to state that f is FI-measurable, and write ν|FI

to denote
the restriction of ν to FI , which is regarded as a measure on C(I,X).
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Let us introduce a special version of the regular conditional probability ν(.|TT ). For
f ∈ FT , g ∈ TT and x̄ ∈ C(R, X) we define∫

fg dνT,x̄ = Eν(f |F{−T,T})(x̄)g(x̄), (2.3)

which is unique up to a set from F{−T,T} of ν-measure zero. For general f ∈ F ,∫
f dνT,x̄ is obtained from (2.3) by approximation of f . In order to make this

precise, one would have to define νT,x̄ as a product measure on C([−T, T ], X) ×
C([−T, T ]c, X) of the regular conditional probability inside [−T, T ] and the Dirac
measure outside [−T, T ]. Intuitively, νT,x̄ is the measure we get from ν when the
path is fixed to x̄ outside [−T, T ] and left free inside [−T, T ]. The conditioning on
F{−T,T} reflects the path continuity of ν, and is necessary to have

∫
f dνT,x̄ well-

defined for general f .
It is clear that νT,x̄ is indeed a version of ν(.|TT ), and it is probably the most

natural one. But we want to emphasize that we did have a lot of choice here. Namely,
by a law of the iterated logarithm-type argument, measures of Markov processes
are usually concentrated on a set of paths that is characterized by the asymptotic
behavior of xt as |t| → ∞ (see e.g. [39]). Thus ν(.|TT ) can be defined arbitrarily
on the set N ⊂ C(R, X) of measure zero that consists of all paths not having
this precise asymptotic behavior. Our definition of νT,x̄ reduces this arbitrariness
considerably, and we will absolutely need this when we define Gibbs measures. In
fact, then even the (in general unavoidable) set from F{−T,T} of ν-measure zero will
cause some trouble.

For finite dimensional X, however, it is often possible to avoid using conditional
expectations altogether in the definition of νT,x̄. This is e.g. the case if ν = W , the
d-dimensional Wiener measure. We may then define WT,x̄ by∫

fg dWT,x̄ =

∫
f dW x̄−T ,x̄T

[−T,T ] g(x̄), (2.4)

where Wξ,η
[a,b] denotes the conditional Wiener measure starting in ξ ∈ Rd at time a

and ending in η ∈ Rd at time b. This is the unique finite measure on C([a, b],Rd)
with∫

f1(xt1) · · · fn(xtn) dWξ,η
[a,b](x) =

∫
Kt1−a(ξ, q1)f1(q1)× (2.5)

×Kt2−t1(q1, q2)f2(q2) · · ·Ktn−tn−1(qn−1, qn)fn(qn)Kb−tn(qn, η) dq1 · · · dqn

for all a ≤ t1 < . . . < tn ≤ b. Here, Kt(ξ, η) = (2πt)−d/2 exp(−|ξ − η|2/2t) denotes
the integral kernel of et∆/2 at points ξ and η in case t > 0, and is δ(ξ − η) in case
t = 0. By using the Feynman-Kac formula, a similar definition can be made when
we replace W by a P (φ)1-process, but we will not need this. Note that Wξ,η

[a,b] is not

a probability measure, but rather one of mass Kb−a(ξ, η).
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Definition 2.1.4 A measurable function V : X → R is called (ν-admissible) single
site potential if it fulfills the following assumption:

a) In case ν is the measure of a Markov process, we must have

0 <

∫
exp

(
−
∫ T

−T
V (xs) ds

)
dν(x) <∞ (2.6)

for all T > 0.

b) In case ν = W, V must be Kato-decomposable (cf. Appendix A.2).

A measurable function W : X ×X ×R+ → R is called (admissible) pair potential
if there exists C∞ <∞ with∫ ∞

−∞
sup
x,y∈X

|W (x, y, |s|)| ds < C∞. (2.7)

Write

Λ(S, T ) = ([−S, S]× [−T, T ]) ∪ ([−T, T ]× [−S, S]) ⊂ R2,

Λ(T ) = (R× [−T, T ]) ∪ ([−T, T ]× R) ⊂ R2,

where S, T > 0. For ν-admissible potentials V and W and T ≤ S we will use the
notation

HΛ(S,T )(x) =

∫ T

−T
V (xs) ds+

∫∫
Λ(S,T )

W (xt, xs, |t− s|) ds dt (x ∈ C(R, X)),

(2.8)
and define HΛ(T ) by replacing Λ(S, T ) with Λ(T ) in (2.8). We will also write HT

instead of HΛ(T,T ).
The notion of potentials above is not the most general possible; apart from the

fact that we only consider shift-invariant potentials, we could also have required
(2.7) to hold only pointwise on a subset of C(R, X) instead of uniformly [21]. We
then would need to suppose that∫

e−HΛ(T )(x) dνT,x̄(x) <∞ (2.9)

for almost every x̄. In our case, which is general enough to cover all situations we
are interested in, (2.9) follows from the admissibility of V and the fact that (2.7)
implies ∣∣∣∣∫∫

Λ(T )

W (xt, xs, |t− s|) ds dt
∣∣∣∣ ≤ 4C∞T. (2.10)

The validity of estimates like (2.10) is often expressed by saying that the left hand
side of (2.10) is an extensive quantity.
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2.1.5 Examples:

a) In (1.58), X = Rd×Φ, ν = P0, V = V , and W = 0. To check admissibility, put
F = G = 1 in (1.58). Finiteness of the partition function is then immediate.
To see that it is also greater than zero, apply Jensen’s inequality to the right
hand side of (1.58) and use the stationarity of P0 to obtain∫

e−
R t
0 V(qs,φs) ds dP0(q, φ) ≥ exp

(
−t
∫
V dP0

)
≥

≥ exp
(
−t ‖V‖L2(P0)

)
≥ e−tb,

where b is the second constant from the Kato-Rellich bound in the assumptions
of Theorem 1.5.11.

b) (1.61) is a special case of a) with V(q, φ) = φ(%q).

c) In (1.62), X = Rd, ν = N0 and

W (x, y, s) = −1

2

∫
|%̂(k)|2

2ω(k)
cos(k · (x− y))e−ω(k)|s| dk. (2.11)

W is admissible since

sup
q∈C(R,Rd)

∣∣∣∣∫ ∞

−∞
W (qt, qs, |t− s|)) ds

∣∣∣∣ = −
∫ ∞

−∞
!W (0, 0, |t− s|) ds =

∫
|%̂(k)|2

2ω2(k)
dk

is finite by the assumption |B|% ∈ K.

d) Using the Feynman-Kac formula (A.2) and (A.5), we find for each FT -measu-
rable, bounded f that∫

f(q)e−
R T
−T ds

R T
−T dtW (qs,qt,|t−s|) dN0(q) = (2.12)

=

∫
ψ0(q−T )f(q)e−

R T
−T V (qs) dse−

R T
−T ds

R T
−T dtW (qs,qt,|t−s|)ψ0(qT ) dW(q),

with W denoting the Wiener measure.

We are now ready to give the central definition of this chapter.

Definition 2.1.6 Let ν be a reference measure and V,W be ν-admissible potentials.
A probability measure ν∞ on C(R, X) is called (infinite volume) Gibbs measure
for the potentials V and W if for each T > 0,

(i): ν∞|F{−T,T} � ν|F{−T,T}, and
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(ii): for each bounded, F-measurable f ,

Eν∞(f |TT )(x̄) =
EνT,x̄(fe−HΛ(T ))

EνT,x̄(e−HΛ(T ))
(2.13)

ν∞-almost surely.

A probability measure νT on C(R,Rd) is called finite volume Gibbs measure for
the volume T if (i) above holds, and

(ii)’: for all 0 < S < T and all bounded f ∈ F ,

EνT
(f |TS)(x̄) =

EνS,x̄(fe−HΛ(S,T ))

EνS,x̄(e−HΛ(S,T ))
(2.14)

νT -almost surely.

(ii) in the above definition corresponds to the DLR equations in the lattice context.
To understand why (i) is necessary, let us first investigate why we needed to consider
the special version νT,x̄ of Eν(.|TT )(x̄). Writing the (much more natural) expression

Eν∞(f |TT ) =
Eν(fe

−HΛ(T ) |TT )

Eν(e
−HΛ(T ) |TT )

(2.15)

instead of (2.13) is certainly visually more appealing, but unfortunately meaningless
in most cases. The problem is that the left hand side of the above equation is only
defined uniquely outside a set N of ν∞-measure zero, while the right hand side is
only defined uniquely outside a set M of ν-measure zero. In many cases of interest,
ν and ν∞ are mutually singular on C(R, X), and then (2.15) is no condition at
all. Thus the general attitude that sets of measure zero do not matter leads to
undesirable results here.

The reason why we need to require (i) explicitly is the same: Without it, the
two sides of (ii) could possibly speak about functions that are uniquely defined
only on disjoint subsets of the probability space. In case of a finite dimensional
state space and a Feller Markov process as reference measure, this inconvenience
can be avoided, as discussed in the paragraph before Definition 2.1.4. Then (i)
is unnecessary. However, for a large state space like Φ it is often not possible to
sensibly pick a fixed version of Eν(.|F{−T,T}).

Finding (or proving existence of) an infinite volume Gibbs measure for potentials
V and W can be quite difficult, but for a finite volume Gibbs measure it is easy.

Proposition 2.1.7 Let ν be a reference measure, and V,W be admissible potentials.
Then for each T > 0 with 0 < Eν(exp(−HT )) <∞,

dνT (x) =
1

Eν(e−HT )
e−HT (x) dν(x)

is a finite volume Gibbs measure to the volume T .
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Proof: By assumption e−HT is ν-integrable. Thus νT � ν, and in particular
νT |F{−T,T} � ν|F{−T,T} . To check (ii), let f, g ∈ L∞(C(R, X)), and suppose g is
TS-measurable. Then for T > S,

Eν(e
−HT )EνT

(
g

EνS,·
(
fe−HΛ(S,T )

)
EνS,·

(
e−HΛ(S,T )

) ) =

= Eν

(
Eν

(
g

EνS,·
(
fe−HΛ(S,T )

)
EνS,·

(
e−HΛ(S,T )

) e−HT

∣∣∣TS)) =

= Eν

(
g

EνS,·
(
fe−HΛ(S,T )

)
EνS,·

(
e−HΛ(S,T )

) e−H[−T,T ]2\Λ(S,T )Eν

(
e−HΛ(S,T )

∣∣∣TS)) =

= Eν(e
−HT )EνT

(fg).

The last equality is due to the fact that EνS,·
(
e−HΛ(S,T )

)
is a version of the conditional

expectation Eν(e
−HΛ(S,T ) |TS). Dividing by Eν(e

−HT ) shows (ii). �
From this proposition it follows that the measures on the right hand sides of

(1.58), (1.61) and (1.62) all are finite volume Gibbs measures. The right hand side
of (2.12) is slightly different, since there we have the ψ0’s sitting at −T and T .
However, this difference is inessential, as the following remark shows.

2.1.8 Remark: Let h : C(R, X) → R be a TT -measurable, nonnegative function
such that 0 < Eν(he

−HT ) <∞. Then the same proof as in Proposition 2.1.7 shows
that

dνhT (x) =
1

Eν(he−HT )
h(x)e−HT (x) dν(x)

is a finite volume Gibbs measure to the volume T . h can be regarded as a ‘boundary
distribution’, and formally replacing h with a delta function on C([−T, T ]c, X) gives
a (sharp) boundary condition.

2.1.9 Notation: The finite volume Gibbs measures for the potentials from Exam-
ple 2.1.5 b) and c) will reappear a lot in this work, so we give them special names
here. We write

dPT (q, φ) =
1

ZT
exp

(
−
∫ T

−T
φs(%q(s)) ds

)
dP0(q, φ), (2.16)

and

dNT (q) =
1

ZT
exp

(
−
∫ T

−T
ds

∫ T

−T
dtW (qs, qt, |s− t|)

)
dN0(q). (2.17)

ZT is the normalizing constant, and as usual, the dependence of ZT on the potential
is suppressed from the notation; but note that here, ‘by chance’, ZT has the same
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value in both (2.16) and (2.17). The reader who takes the effort to look up the
definition of W in (2.11) will notice that W carries a minus sign there, which makes
it look more natural to drop both that minus sign and the one in the exponent of
(2.17). We do not do so, following the convention that the energy HT must alway
enter with a minus sign into the exponent in a Gibbs measure.

In Example 2.1.1 we claimed that taking limits of finite volume Gibbs measures is
the most natural way to construct infinite volume Gibbs measures. On the other
hand, Definition 2.1.6 has nothing to do with taking limits. The final statement of
this section will make the connection between the two concepts, but before we can
do so, we must specify the type of convergence we want to consider.

Definition 2.1.10 Let (νN) be a sequence of probability measures on C(R, X). We
say that νN converges locally to a probability measure ν if for each 0 < T < ∞
and each A ∈ FT , νN(A) → ν(A) as N →∞.

2.1.11 Remarks:

(i): Typically infinite volume Gibbs measures are mutually singular with respect
to their reference measures, but finite volume Gibbs measures are absolutely
continuous with respect to them. Thus local convergence is the best we can
hope for. In particular, we will usually find a T -measurable function f (with
T =

⋂
N∈N TN) such that

∫
f dνN = 0 for all N but

∫
f dν = 1.

(ii): Setwise convergence usually is a much too strong concept for the convergence
of measures. In fact, would we insist on convergence on all sets of F , we would
be in trouble due to (i). Since we however only have to check convergence on
sets from FT for finite T , the special structure of Gibbs measures will allow
us to show local convergence of finite volume Gibbs measures in all cases we
consider. Also in the context of Gibbs measures on a lattice, local convergence
is the most useful concept of convergence [18].

Proposition 2.1.12 Let ν be a reference measure,and V,W be admissible poten-
tials. Let (νn) be a sequence of finite volume Gibbs measures for V and W to the
volumes Tn with Tn →∞ as n→∞. Suppose that there exists a probability measure
ν∞ on C(R, X) such that νn → ν∞ in the topology of local convergence, and sup-
pose that ν∞ fulfills (i) of Definition 2.1.6 with respect to ν. Then ν∞ is an infinite
volume Gibbs measure for V and W .

Proof: Since we supposed (i), only (ii) from Definition 2.1.6 remains to be shown.
Each νn is a finite volume Gibbs measure, thus for f, g ∈ L∞ with TS-measurable g
we have

Eνn

(
g

EνS,·(fe−HΛ(S,Tn))

EνS,·(e−HΛ(S,Tn))

)
= Eνn(fg) (2.18)
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for each S < Tn. All we have to show is that (2.18) survives the n→∞ limit. By a
monotone class argument [13], we may assume that both f and g are FR-measurable
for some R > 0. In this case, the right hand side of (2.18) converges by definition
of local convergence. On the left hand side, (2.7) implies that∫∫

Λ(S,Tn)

W (xs, xt, |t− s|) ds dt n→∞−→
∫∫

Λ(S)

W (xs, xt, |t− s|) ds dt

uniformly in x ∈ C(R, X), and thus

Fn(x) =
EνS,x(fe−HΛ(S,Tn))

EνS,x(e−HΛ(S,Tn))

n→∞−→ EνS,x(fe−HΛ(S))

EνS,x(e−HΛ(S))
= F (x)

uniformly in x. Thus for each ε > 0, we can find N ∈ N such that ‖Fn − F‖∞ < ε
whenever n > N . By the triangle inequality,

|Eνn(gFn)− Eν(gF )| ≤ |Eνn(gFN)− Eν(gFN)|+ 3 ‖g‖∞ ε
n→∞−→ 3 ‖g‖∞ ε;

since ε was arbitrary, convergence of the left hand side in (2.18) is shown. �

2.2 Infinite volume Gibbs measures - the Marko-

vian case

In this section we investigate existence of the infinite volume Gibbs measure for the
special case that the pair potential W is zero. In this case, one infinite volume Gibbs
measure is usually the measure of a stationary Markov process. If there is more
than one Gibbs measure, also non-stationary and even non-Markovian processes
are possible, as we will see later. The same phenomenon occurs in lattice Gibbs
measures, cf. [18, Ch. 10 and 11].

We will always write H0 for the generator of the reference measure ν, or alterna-
tively H0 = −1

2
∆ in case ν = W . For the single site potential, we will need different

assumptions in different situations. However, since most of them are needed more
often than not, we list them all here for later reference.

2.2.1 Assumptions on V :

(V1): V is ν-admissible (cf. Definition 2.1.4) and a Feynman-Kac formula with
respect to ν holds, i.e. for all f, g ∈ L2(ν0) ∩ L∞(ν0) we have∫

f(x0)e
−

R t
0 V (xs) dsg(xt) dν(x) =

〈
f, e−t(H0+V )g

〉
L2(ν0)

,

where ν0 is the stationary measure of ν, or Lebesgue measure in case ν = W .



2.2. MARKOVIAN INFINITE VOLUME GIBBS MEASURES 41

(V2): The operator H = H0 + V has a unique, positive ground state ψ0 ∈ L2(ν0).
This means that E0 = inf spec(H) is an eigenvalue of multiplicity one, with
eigenfunction ψ0 that can be chosen such that ψ0 > 0. We will always assume
ψ0 to be normalized, i.e. ‖ψ0‖L2(ν) = 1.

(V3): The ground state ψ0 is not only in L2(ν), but also in L1(ν).

(V4): The lowest eigenvalue E0 of H is separated from the rest of the spectrum of
H by a spectral gap γ > 0.

Let us discuss these assumptions for the two cases we are most interested in: the
case ν = W , and the case ν = P0 with H being the Nelson Hamiltonian.

2.2.2 Remarks:

a) In case ν = W , the assumption that V is Kato-decomposable (= admissible)
in (V1) already implies the Feynman-Kac-formula [46]. In case ν = P0, (V1) is
fulfilled if V satisfies the assumptions of Theorem 1.5.11, which is in particular
the case if H is the Nelson Hamiltonian.

b) (V2) is the crucial assumption that will allow us to solve the problem of ex-
istence of an infinite volume Gibbs measure with relatively little effort using
spectral theory. Unfortunately, it is also a nontrivial assumption, especially
if the state space X is infinite dimensional. In case of the Nelson Hamilto-
nian, existence of a ground state is proven in [48] under certain conditions on
the coupling %. We will discuss these conditions in detail at the beginning of
Section 3.1. In case ν = W , the problem of existence of a ground state for
Schrödinger operators is well studied [42]. In particular, a ground state exists
as soon as V (x) →∞ as |x| → ∞, but also for many other potentials like the
Coulomb potential V (x) = −1/|x| in dimension d ≥ 3. However, for V = 0 we
have, of course, no ground state. In all of the above situations, existence of the
ground state already implies uniqueness and positivity by a Perron-Frobenius
argument [19].

c) Assumption (V3) is very weak. Except in case ν = W , it is automatically
fulfilled, since then ν0 is a probability measure. In case ν = W , the ground
state ψ0 is known to decay exponentially for large |x| in most cases of interest
[10], and thus in these cases (V3) also holds.

d) In case of a finite dimensional state space, most Schrödinger operators that
have a ground state also have a spectral gap. In particular, this is the case for
all of the potentials mentioned in b) (except V = 0, of course). For the Nelson
Hamiltonian, however, an argument [16] along the lines of the KVZ theorem
[42] shows that there exists no spectral gap.
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The key result for proving existence of an infinite volume Gibbs measure is

Theorem 2.2.3 Assume (V1) and (V2). Then for each g ∈ L2(ν0) with g ≥ 0 and
〈ψ0, g〉L2(ν0) 6= 0, the sequence

dνT (x) =
1

ZT
g(x−T )e−

R T
−T V (xs) dsg(xT ) dν(x)

converges locally. The limiting measure ν∞ is the stationary Markov process with
transition probabilities

Eν∞(f(xt)|F{0})(x0) =
1

ψ0(x0)
Eν

(
e−

R t
0 (V (xs)−E0) dsf(xt)ψ0(xt)

∣∣∣F{0}) (x0) (2.19)

and stationary measure ψ2
0dν0.

Proof: By the Feynman-Kac formula and the reversibility of ν,

Eν

(
e−

R −S
−T V (xs) dsg(x−T )

∣∣∣F{−S}) = Eν

(
e−

R T
S V (xs) dsg(xT )

∣∣∣F{S}) = e−(T−S)Hg.

Since the multiplicity of the eigenvalue E0 is one by assumption, spectral theory
implies

e(T−S)E0e−(T−S)Hg
T→∞−→ 〈ψ0, g〉L2(ν0) ψ0

in L2(ν0). Moreover, ZT =
∥∥e−THg∥∥2

L2(ν0)
, and thus for FS-measurable F ∈ L∞, we

have∫
F (x)dνT (x) =

1

ZT
Eν

(
Eν

(
e−

R −S
−T V (xs) dsg(x−T )

∣∣∣F{−S}) ×
× Eν

(
e−

R S
−S V (xs) dsF (x)

∣∣∣F{−S,S})Eν

(
e−

R T
S V (xs) dsg(xT )

∣∣∣F{S})) =

=
1

‖e−THg‖2
L2(ν0)

Eν

((
e−(T−S)Hg

)
(x−S) ×

× Eν

(
e−

R S
−S V (xs) dsF (x)

∣∣∣F{−S,S}) (e−(T−S)Hg
)
(xS)

)
T→∞−→

T→∞−→ 1

〈ψ0, g〉2L2(ν0)

Eν

(
〈ψ0, g〉2L2(ν0) ψ0(x−S)e

−
R S
−S V (xs) dsF (x)ψ0(xS)

)
e2SE0 =

= Eν

(
ψ0(x−S)e

−
R S
−S(V (xs)−E0) dsF (x)ψ0(xS)

)
= Eν∞(F ).

�

Corollary 2.2.4 With the assumptions and notations of Theorem 2.2.3, ν∞ is an
infinite volume Gibbs measure for the potential V .
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Proof: By Remark 2.1.8, each νT is a finite volume Gibbs measure to the volume T .
By Proposition 2.1.12, we only need to check local absolute continuity, i.e. (i) from
Definition 2.1.6. By (2.19), for F ∈ FS we have

Eν∞(F ) = Eν

(
ψ0(x−S)e

−
R S
−S(V (xs)−E0) dsF (x)ψ0(xS)

)
.

This shows ν∞|FS
� ν|FS

, which implies ν∞|F{−S,S} � ν|F{−S,S} . �
The immediate consequence for the measures NT and PT from 2.1.9 is

Corollary 2.2.5 Assume that the Hamiltonian H of Nelson’s model has a (unique,
positive) ground state Ψ in L2(P0) with HΨ = E0Ψ. Then the infinite volume Gibbs
measure P to the reference measure P0 and potential (q, φ) 7→ φ(%q) exists and is
the measure on C(R,Rd × Φ) uniquely determined by∫

F (q, φ) dP(q, φ) =

∫
Ψ(q−S, φ−S)e

−
R S
−S(φs(%q(s))−E0) dsF (q, φ)Ψ(qS, φS) dP0(q, φ)

for each FS-measurable, bounded F . Moreover, in this case the local limit of the
measures NT exists, hence there exists an infinite volume Gibbs measure to the
reference measure N0, the pair potential W and the state space Rd. This measure
will be denoted by N . We have∫

f dN =

∫
f ⊗ 1 dP

for all f ∈ L1(N ).

This Corollary is basically all we will need from this section in Chapter 3. It also
shows a first example where we are able to prove existence of a Gibbs measure with
a nonzero pair potential. More general results on this situation are contained in the
next section. We caution the reader that, althogh P is uniquely determined by the
formula given in the above Corollary, it is not necessarily the one and only Gibbs
measure for the given potential. The question of uniqueness in this case is open.

We now investigate uniqueness of the infinite volume Gibbs measure in a re-
stricted set-up. For the rest of this section, which is taken mainly from [5], we let
X = Rd, ν = W , and use WT,x̄ as defined in (2.4). For a shorter notation, we will
also write Ω = C(R,Rd). For x̄ ∈ Ω, denote by ν x̄T the finite volume Gibbs measure
to the volume T with sharp boundary condition x̄, i.e. the probability measure on
Ω with

Eνx̄T
(f) =

1

Z x̄
T

∫
e−

R T
−T V (xs) dsf(x)dWT,x̄(x),

where

Z x̄
T =

∫
e−

R T
−T V (xs) dsdWT,x̄(x).



44 CHAPTER 2. GIBBS MEASURES OVER BROWNIAN MOTION

In this setting, the stationary Gibbs measure from Corollary 2.2.4 is the P (φ)1-
process to the Schrödinger operator H = H0 +V from Appendix A.2. As mentioned
there, we always add a constant to V in order to achieve inf spec(H0 + V ) = 0 in
this context. Thanks to the normalizing constant, this does not change our finite
volume Gibbs measures.

The following example shows that uniqueness of the Gibbs measure can not be
expected to hold in general. A similar example in the lattice context has been given
in [2].

2.2.6 Example: Let d = 1 and V = 1
2
(x2 − 1). Then the ground state of H =

−1
2
d2

dx2 + V is ψ0(x) = π−1/4e−x
2/2, and the one-dimensional Ornstein-Uhlenbeck

process is the stationary infinite volume Gibbs measure. However, it is not the only
Gibbs measure. Denote by Kt the integral kernel of e−tH . By Mehler’s formula,

Kt(ξ, η) =
1√

π(1− e−2t)
exp

(
4ξηe−t − (ξ2 + η2)(1 + e−2t)

2(1− e−2t)

)
. (2.20)

Now fix α, β ∈ R and define for s, ξ ∈ R

ψls(ξ) := π−1/4 exp

(
−1

2
(ξ + αe−s)2

)
exp

(
αe−s

2

)2

,

ψrs(ξ) := π−1/4 exp

(
−1

2
(ξ + βe+s)2

)
exp

(
βe+s

2

)2

.

An explicit calculation using (2.20) shows that

e−tHψls = ψls+t, e−tHψrs = ψrs−t, and
〈
ψls, ψ

r
s

〉
= eαβ/2. (2.21)

Therefore for F (x) = f1(xt1) · · · fn(xtn), we have

Eνα,β
(F ) := e−αβ/2

〈
ψlt1f1, e

−(t2−t1)Hf2 . . . e
−(tn−tn−1)Hfnψ

r
tn

〉
L2 . (2.22)

Equations (2.22) define a consistent family of probability measures, and hence they
are the finite dimensional distributions of a probability measure να,β on C(R,R).
With (2.21) we also see that the family

dνα,β,T (x) =
1

ZT
ψl−T (x−T )e−

R T
−T V (xs) dsψrT (xT )

of finite volume Gibbs measures converges locally to να,β. Thus for each α and each
β, να,β is an infinite volume Gibbs measure for V . Certainly, none of these measures
except the one for α = β = 0 is stationary, but they are still all Markov processes.
To get a Gibbs measure that is not a Markov process, we can e.g. take a random
variable ω taking value 1 and −1 both with probability 1/2, and take the local limit
of νω,ω,T . For this measure, P(lim supt→∞ xt = +∞|F{0}) = 1/2 almost surely, while
the behavior of a path at t→ +∞ can be read off by its behavior at t→ −∞, thus
P(lim supt→∞ xt = +∞|F]−∞,0]) is a random variable taking the values 0 and 1.
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The Gibbs measures with α, β 6= 0 from the previous example all have exponentially
growing paths. We will now see that once we rule out measures with quickly growing
paths from our considerations, we can show uniqueness. We start by giving a result
that is connected with Proposition 2.1.12. There we saw that each x̄ for which
(νxT )T>0 converges (at least along a subsequence) gives rise to an infinite volume
Gibbs measure. Here we will see that if all the measures obtained like this are
identical, then there is no other infinite volume Gibbs measure.

We say that a measure µ on Ω is supported on a measurable set Ω∗ ⊂ Ω if
µ(Ω∗) = 1.

Lemma 2.2.7 Let Ω∗ ⊂ Ω be measurable and let ν∞ be an infinite volume Gibbs
measure for the potential V supported on Ω∗. If ν x̄N → ν∞ as N 3 N → ∞ locally
for each x̄ ∈ Ω∗, then ν∞ is the only infinite volume Gibbs measure for V supported
on Ω∗.

Proof: Let ν̃ be any infinite volume Gibbs measure supported by Ω∗. For each
A ∈ FS (S > 0), x̄ 7→ ν̃(A|TN)(x̄) is a backward martingale in N , thus convergent
almost everywhere to ν̃(A|T )(x̄). By the DLR equations (2.13) , ν̃(A|TN)(x̄) =
ν x̄N(A) ν̃-almost surely, and thus for ν̃-almost every x̄ ∈ Ω∗, we find

ν̃(A|T )(x̄) = lim
N→∞

ν̃(A|TN)(x̄) = lim
N→∞

ν x̄N(A) = ν∞(A).

Here we put T =
⋂
n∈N Tn. Taking ν̃-expectations on both sides of the above

equation shows ν̃(A) = ν∞(A). Since this is true for each A ∈ FS and each S > 0,
ν̃ = ν∞. �

Arguments of this kind are quite standard in the theory of Gibbs measures. See
Theorem 7.12 of [18] for a related result.

Our uniqueness theorem now reads

Theorem 2.2.8 Assume (V1), (V2), (V3) and (V4). Recall that γ is the spectral
gap of the Schrödinger operator H = H0 + V with ground state ψ0. Define

Ω∗ :=

{
x ∈ Ω : lim

N3N→∞

e−γN

ψ0(x(±N))
= 0

}
. (2.23)

Then the unique Gibbs measure for V supported by Ω∗ is the P (φ)1-measure µ cor-
responding to V .

Proof: Pick x̄ ∈ Ω∗. In order to apply Lemma 2.2.7 we have to show

lim
N→∞

ν x̄N(A) = µ(A). (2.24)

for each FS-measurable set A ⊂ Ω, and since we already know the limit is a prob-
ability measure and W is σ-finite, it will be sufficient to show (2.24) for A with
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W(A) <∞. To do so, first note that by the Markov property of Brownian motion,
for N > S we have

ν x̄N(A)=
1

ZN(x̄)

∫∫
KN−S(x̄−N , ξ)

∫
e−

R S
−S V (xs) ds1A(x) dWξ,η

[−S,S](x)KN−S(η, x̄N) dξdη,

(2.25)
Here,

Kt(ξ, η) =

∫
e−

R t
0 V (x(s)) ds dWξ,η

[0,t](x)

is the integral kernel of e−tH by the virtue of the Feynman-Kac formula, and Wξ,η
[a,b]

is conditional Wiener measure starting in ξ at time a and ending in η at time b, cf.
(2.4). Since ZN(x̄) = K2N(x̄−N , x̄N), and since

∫
exp(−

∫ S
−S V (xs) ds)1A(x) dWξ,η

[−S,S]

is an integrable function on R2d, it will be sufficient if we show that

KN−S(x̄−N , ξ)KN−S(η, x̄N)

K2N(x̄−N , x̄N)

N→∞−→ ψ0(ξ)ψ0(η) (2.26)

uniformly in ξ, η ∈ Rd.
Let Pψ0 : L2(Rd) → L2(Rd) be the projection onto the one-dimensional subspace

spanned by ψ0, and put
Lt := e−tH − Pψ0 .

Lt is an integral operator with kernel K̃t(ξ, η) = Kt(ξ, η) − ψ0(ξ)ψ0(η). By the
assumption γ > 0 we have

‖Lt‖2,2 = e−γt. (2.27)

Here and below ‖.‖p,q denotes the norm of an operator from Lp to Lq. For estimating

K̃t note that

sup
ξ,η∈Rd

∣∣∣K̃t(ξ, η)
∣∣∣ = sup

f∈L1,‖f‖L1=1

∥∥∥∥∫ K̃t(ξ, η)f(η) dη

∥∥∥∥
∞

= ‖Lt‖1,∞ .

Since e−tHPψ0 = Pψ0e
−tH = Pψ0 , for all t > 2 we have

‖Lt‖1,∞ =
∥∥e−H(e−(t−2)H − Pψ0)e

−H∥∥
1,∞ ≤

∥∥e−H∥∥
2,∞ ‖Lt−2‖2,2

∥∥e−H∥∥
1,2
.

By (S1) from Appendix A.2, both
∥∥e−H∥∥

2,∞ and
∥∥e−H∥∥

1,2
are finite. It thus follows

that for every (N − S) ≥ 2,

|KN−S(ξ, η)− ψ0(ξ)ψ0(η)| ≤ CSe
−γN , (2.28)

where CS =
∥∥e−H∥∥

2,∞

∥∥e−H∥∥
1,2
eγ(2+S) is independent of x, y and N . Writing

QN(ξ, η) =
KN(ξ, η)

ψ0(ξ)ψ0(η)
,
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we have∣∣∣KN−S(x̄−N ,ξ)KN−S(η,x̄N )

K2N (x̄−N ,x̄N )
− ψ0(ξ)ψ0(η)

∣∣∣ = ψ0(ξ)ψ0(η)
∣∣∣QN−S(x̄−N ,ξ)QN−S(η,x̄N )

Q2N (x̄−N ,x̄N )
− 1
∣∣∣ .

(2.28) now just states that |QN−S(ξ, η) − 1| ≤ CSe
−γN/(ψ0(ξ)ψ0(η)), and thus for

all x̄ ∈ Ω∗, we find

|QN−S(x̄−N , ξ)− 1|ψ0(ξ) ≤ CSe
−γN/ψ0(x̄N) → 0,

|QN−S(η, x̄N)− 1|ψ0(η) ≤ CSe
−γN/ψ0(x̄−N) → 0, and

|Q2N(x̄−N , x̄N)− 1| ≤ e−2γN/(ψ0(x̄−N)ψ0(x̄N)) → 0

as N → ∞, proving (2.26). It remains to show that the P (φ)1-measure is actually
supported on Ω∗. By time reversibility of µ, it will be enough to show

µ

(
lim sup
N→∞

e−γN

ψ0(xN)
> q

)
= 0 (2.29)

for each q > 0. To prove (2.29), note that by the stationarity of µ,

µ

(
e−γN

ψ0(xN)
≥ q

)
= µ

(
ψ0(x0) ≤

exp(−γN)

q

)
=

=

∫
1{ψ0≤exp(−γN)/q}ψ

2
0 dξ ≤

≤ exp(−γN)

q
‖ψ0‖L1 .

The right hand side of the last expression is summable in N for each q, and so the
Borel-Cantelli lemma proves (2.29), finishing the proof. �

Of course we are interested in how large the set Ω∗ from the above theorem
actually is. The size of Ω∗ depends on the decay of ψ0 at infinity, which in many
cases can be read off the growth of V at infinity. One of the strongest results in this
direction is due to R. Carmona [10] and requires some mild additional restrictions
on V .

Definition 2.2.9 V : Rd → R is in the Carmona class if there exists a breakup
V = V1 − V2, such that

V1 ∈ Ld/2+ε
loc for some ε > 0, and V1 is bounded below,

V2 ∈ Lp for some p > max{1, d/2}, and V2 ≥ 0.

Theorem 2.2.10 [10] Assume that V is from the Carmona class and that H has a
ground state ψ0.
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a) If there exist m > 0, C > 0 such that V (x) ≥ C|x|2m, then there exist D >
0, δ > 0 with

|ψ0(x)| ≤ D exp(−δ|x|m+1) ∀x ∈ Rd.

b) If there exist m > 0, C > 0 such that V (x) ≤ C|x|2m, then there exist D >
0, δ > 0 with

|ψ0(x)| ≥ D exp(−δ|x|m+1) ∀x ∈ Rd.

c) If lim inf |x|→∞ V (x) > 0 = E0, then there exist D > 0, δ > 0 with

|ψ0(x)| ≤ D exp(−δ|x|) ∀x ∈ Rd.

As an example for the application of this theorem, consider a potential V growing
at infinity like |x|2m, m > 0. The ground state ψ0 of the corresponding Schrödinger
operator can then be estimated as

Ce−a|x|
m+1

≤ ψ0(x) ≤ De−b|x|
m+1

with suitable constants C,D, a, b, and consequently in this case Ω∗ consists of func-
tions that grow at most like T 1/(m+1) at infinity. Hence Ω∗ becomes smaller for
more confining potentials. This is quite the opposite of what one would expect to
be true since intuitively a more confining potential brings a path back to the origin
more quickly and should therefore allow more rapidly growing boundary conditions.
In fact, by using completely different methods than ours, [25] shows uniqueness
on the set {ω ∈ Ω : lim|T |→∞ ω(T )e−a|T | = 0 ∀a > 0} under the restriction that

x 7→ V (x)− κ |x|2 is convex for some κ > 0. This is much closer to what we would
expect to be true, but the restriction on the potentials is severe. The reason why
our subset of uniqueness is relatively small and even shrinks for more confining po-
tentials is that in the proof of Theorem 2.2.8, we used the rather crude estimate
K2T (x̄(−T ), x̄(T )) = ψ0(x̄(−T ))ψ0(x̄(T ))+O(e−2γT ) in the denominator, and hence
a fast decay of ψ0 had to be compensated by a slow growth of x̄. However, from
the point of view of Gibbs measures, Ω∗ is already large enough since it carries full
P (φ)1-measure.

2.3 Infinite volume Gibbs measures -

the non-Markovian case

We now investigate existence of an infinite volume Gibbs measure in case W 6= 0.
In this case, the Gibbs measure will not be a Markov process, and the powerful
spectral theory we used in the previous section is no longer available. The contents
of this section are taken from [3].
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Several authors have by now studied the problem. All of them assume (2.10)
in some form, but also need additional restrictions on V and W . In [38], the first
mathematical account on the subject, correlation inequalities are used, and conse-
quently the potentials V and W have to fulfill certain convexity assumptions. In
[29], a cluster expansion method is applied, requiring a small parameter (coupling
constant) in front of W as well as a V that is growing faster than quadratically at
infinity. Recently, [21] used an integration by parts formula. His restrictions on W
are weak, but strong assumptions on the asymptotic behavior of V are needed. In
particular, V has to grow at least quadratically at infinity.

Our method relies on a compactness argument, using the strong Markov property
of the reference measure and a stopping time estimate. The main advantage over the
existing approaches is that our restrictions on V are weak: only (V1), (V2) and (V3)
from 2.2.1 are needed. This covers all cases from [38, 29, 21], and in addition allows
for V ’s which do not grow at infinity. For the pair potential W , we need (uniform)
integrability conditions that are stronger than the integrability conditions imposed
in [38], [29] or [21]. On the other hand, we neither need the convexity assumed in
[38], nor the small parameter of [29], nor the differentiability needed in [21].

All existing works treating the case W 6= 0 only consider a finite dimensional
state space, i.e. take X = Rd, and so do we. We will take Wiener measure W as a
reference measure, but will use (V2) to get rid of the single site potential V , at the
same time replacing W by a P (φ)1-process. To be precise, let us write µ0 for the
measure of the P (φ)1-process arising from the Schrödinger operator H = −1

2
∆ +V .

Then in analogy to (2.12), the Feynman-Kac formula implies∫
ψ0(x−T )f(x)e−

R T
−T V (xs) dse−

R T
−T ds

R T
−T dtW (xs,xt,|t−s|)ψ0(xT ) dW(x) =

=

∫
f(x)e−

R T
−T ds

R T
−T dtW (xs,xt,|t−s|) dµ0(x) (2.30)

for each FT -measurable, µ0-integrable function f . According to Remark 2.1.8, both
sides of (2.30) display integration of f with respect to a finite volume Gibbs measure.
On the left hand side, it is the one with boundary condition ψ0, potentials V and
W and reference measure W , while on the right hand side, we have no boundary
condition, no single site potential and reference measure µ0.

We are only going to prove existence, not uniqueness, of the infinite volume
Gibbs measure. For this purpose we will employ Proposition 2.1.12 and thus are
looking for a local limit of any sequence of finite volume Gibbs measures. Choosing
the ones with boundary condition ψ0 like we do on the left hand side of (2.30), we
may (and will) as well treat the right hand side of (2.30) instead.

Thus from now on we assume:

(i): The reference measure is the measure µ0 of a P (φ)1-process arising from the
Schrödinger operator H = −1

2
∆ + V , where V fulfills (V1) and (V2).
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(ii): The single site potential (relative to µ0) is equal to zero. We will continue to
refer to (V1)-(V3), but this will mean the potential in the Schrödinger operator
from now on.

Taking (ii) into account, (2.8) reads

HΛ(x) =

∫∫
Λ

W (xt, xs, |t− s|) ds dt (x ∈ C(R,Rd)) (2.31)

with Λ ⊂ R2, and the finite volume Gibbs measures we consider are

dµT (x) =
1

ZT
e−HT (x) dµ0(x), (2.32)

where ZT =
∫

exp(−HT (x)) dµ0(x) as usual.

In order to state our assumptions on W , we need the following

Definition 2.3.1 Let C(0)(R,Rd) denote the space of functions which are continu-
ous with the possible exception of the point 0 but have left and right hand side limits
there. For τ > 0 we define the map

θ(0)
τ : C(R,Rd) → C(0)(R,Rd), (θ(0)

τ x)t =

{
xt+τ if t ≥ 0,
xt−τ if t < 0.

(2.33)

2.3.2 Assumptions on W :

(W1): W is admissible in the sense of Definition 2.1.4.

(W2): Define

α = lim inf
|x|→∞

V (x)− E0 ≤ ∞, (2.34)

where E0 = inf specH. We assume that there exist D ≥ 0 and 0 ≤ C < α
such that

−HT (x) ≤ −HT (θ(0)
τ x) + Cτ +D (2.35)

for all T, τ > 0 and all x ∈ C(R,Rd).
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2.3.3 Remarks:

a) An immediate consequence of (W1) is∣∣HR×[−S,S](x)
∣∣ ≤ 2C∞S, and

∣∣H[−S,S]×R(x)
∣∣ ≤ 2C∞S. (2.36)

(2.36) will be used frequently below.

b) In contrast to (2.36), the quantity

I = 2 sup
x∈C(R,Rd)

∣∣∣∣∫ 0

−∞
ds

∫ ∞

0

dtW (xt, xs, |t− s|)
∣∣∣∣ (2.37)

is not controlled by (W1) (and also not by (W2)). I is the interaction energy
between the left and right half line. According to the folklore, I < ∞ is a
sufficient condition for uniqueness of the infinite volume Gibbs measure. Such
a strong result is not available at present, but [38] and [29] have some results
about uniqueness, and [38] gives an example where uniqueness fails when (2.37)
is not finite.

c) In the context of Nelson’s model, i.e. with

W (x, y, t) = −1

2

∫
|%̂(k)|2

2ω(k)
eik(x−y)e−ω(k)|t| dk,

I is closely connected with infrared divergence, cf. 1.5.15. Indeed, in this case

I =

∫
|%̂(k)|2

2ω(k)3
dk =

∥∥|B|2%∥∥2

K
,

which is finite if and only if the infrared cutoff is made. One important feature
of our method below is that it also works in cases where I = ∞.

d) (W2) looks a little mysterious at first, but the proof of Theorem 2.3.7 will
show how it comes about naturally. To see when (W2) is fulfilled, note that
by (2.7),

−
∫ T

0

ds

∫ T

0

dtW (xt, xs, |t− s|) ≤ 4C∞τ −
∫ T+τ

τ

ds

∫ T+τ

τ

dtW (xt, xs, |t− s|) =

= 4C∞τ −
∫ T

0

ds

∫ T

0

dtW (xt+τ , xs+τ , |t− s|),

and similarly for the region [−T, 0]2. Thus, if we suppose

Ĩ = sup
x∈C(R,Rd)

∫ 0

−∞
ds

∫ ∞

0

dt |W (xt, xs, |t− s|)| <∞,
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then 8C∞ < α is a sufficient condition for (W2). In case Ĩ = ∞, it is not hard
to see that if there exist L,M > 0 with∫ 0

−T
ds

∫ T

0

dt
(
W (xs, xt, |s− t|+ 2τ)−W (xs, xt, |s− t|)

)
≤ Lτ +M (2.38)

uniformly in x ∈ C(R,Rd) and T > 0, then 16C∞ + 2L < α is a sufficient
condition for (W2). (2.38) can be checked directly for many choices of W , and
is in particular true in the case of Nelson’s model without infrared cutoff. This
is seen from the estimate∣∣∣∣∫ 0

−T
ds

∫ T

0

dt
(
W (xs, xt, |s− t|+ 2τ)−W (xs, xt, |s− t|)

)∣∣∣∣ ≤
≤

∫ 0

−T
ds

∫ T

0

dt

∫
dk
|%̂(k)|2

2ω(k)
e−ω(k)|t−s| (1− e−2ω(k)τ

)
≤

≤
∫ 0

−T
ds

∫ T

0

dt

∫
dk
|%̂(k)|2

2ω(k)
e−ω(k)|t−s||2ω(k)τ | = τ

∫
|%̂(k)|2

ω(k)2
dk.

On the other hand, for

W (x, y, |t|) =

{
− 1
|t|2+1

if |x− y| ≤ 2t

0 otherwise

(x, y ∈ R) together with the path xt = t, we find that
∫ 0

−T ds
∫ T

0
dtW (xs, xt, |t−

s|) diverges as T → ∞, but e.g.
∫ 0

−T ds
∫ T

0
dtW (xs−1, xt+1, |t− s|) = 0. Thus

(W2) need not hold in general.

In order to show existence of an infinite volume Gibbs measure, due to Proposition
2.1.12 it will be sufficient to pick a sequence (Tn) with Tn →∞ and to find a cluster
point of the sequence (µTn)n∈N. To do so, we will use the following concept . . .

Definition 2.3.4 A family (νT ) of probability measures on C(R,Rd) is said to be
locally uniformly dominated if for each S <∞ there exists a finite measure ν̄S
on FS with the property that for each ε > 0, one can find a δ > 0 such that

ν̄S(A) < δ implies lim sup
T→∞

νT (A) < ε for each A ∈ FS.

. . . and the following result:

Proposition 2.3.5 Every locally uniformly dominated family of probability mea-
sures on C(R,Rd) has at least one cluster point, which itself is a probability measure
on C(R,Rd).
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Proof: Since C(R,Rd) is a standard Borel space (cf. [18] for the notion), Proposition
(4.9) of [18] and the comment thereafter imply the claim. �

We thus have to show local uniform domination of the family (µT ). A first step
is

Proposition 2.3.6 Define (µT )T>0 as in (2.32), and assume (V1), (V2) and (W1).
Further suppose that

(U): For each S > 0 and each ε > 0, there exists R > 0 with

µT (|xs| > R) < ε uniformly in |s| < S and T > 0.

Then (µT ) is locally uniformly dominated by the restrictions of µ0 to the σ-fields FS.

Proof: Fix S > 0 and ε > 0. Using (U), choose R > 0 so large that µT (|xs| > R) <
ε/8 uniformly in |s| < S + 1 and T > 0. Then with

B = {x ∈ C(R,Rd) : |x−S−1| < R, |x−S| < R, |xS| < R, |xS+1| < R},

we have µT (Bc) < ε/2 uniformly in T . Now for arbitrary A ∈ FS,

µT (A) = µT (A ∩Bc) + µT (A ∩B) ≤ ε/2 + µT (µT (A ∩B|TS+1)). (2.39)

We are only interested in the lim sup as T → ∞, so let T > S + 1. Then the fact
that µT is a finite volume Gibbs measure gives

µT (A ∩B|TS+1)(x̄) =
1

ZS
T (x̄)

∫
e−HΛ(S+1,T )(x)1A∩B(x) dµS+1,x̄

0 (x) ≤

≤ e8C∞(S+1)

∫
1A∩B(x) dµS+1,x̄

0 (x).

Moreover, by the special choice of B, an expression similar to (2.25) and the fact
that Kt(ξ, η) (using the notation as in (2.25)) and ψ0(ξ) are both bounded and
bounded away from zero on the compact set {(ξ, η) ∈ R2d : |ξ| < R, |η| < R}, we
get

sup
x̄∈C(R,Rd)

∫
1A∩B(x) dµS+1,x̄

0 (x) ≤Mµ0(A)

for some M > 0. Inserted in (2.39), this gives

µT (A) ≤ ε/2 +Me8C∞(S+1)µ0(A) for each A ∈ FS,

and now local uniform domination follows by choosing δ < εe−8C∞(S+1)/2M . �
It remains to prove (U), which turns out to require most of the work.
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Theorem 2.3.7 Assume (V1), (V2), (V3), (W1) and (W2). Then (µT )T>0 fulfills
(U).

Proof: Since by (2.36) and the stationarity of µ0 we have

e−8|t|C∞
∫
f(xt) dµT (x) ≤

∫
f(x0) dµT (x) ≤ e8|t|C∞

∫
f(xt) dµT (x)

for all t ∈ R, T > 0 and f ∈ L∞(Rd), it will be sufficient to prove the claim for
t = 0. We do so in several steps.
Step 1: Let Eµ0(f |x0 = y) denote expectation with respect to the measure µ0

conditional on x0 = y. Since x 7→ x0 has distribution ψ2
0dx, we have

µT (|x0| > R) =
1

ZT

∫
|y|>R

ψ2
0(y)Eµ0

(
e−HT

∣∣∣x0 = y
)
dy. (2.40)

In the next few steps, we will show that there exists K > 0 and r > 0 such that for
all T > 0 and all y ∈ Rd,

Eµ0

(
e−HT

∣∣∣x0 = y
)
≤ K

ψ0(y)
inf
|z|≤r

Eµ0

(
e−HT

∣∣∣x0 = z
)
. (2.41)

Once we will have established (2.41), we can plug it into (2.40). Since moreover

1

ZT
inf
|z|≤r

Eµ0

(
e−HT

∣∣∣x0 = z
)
≤
(∫

|z|<r
ψ2

0(z) dz

)−1

µT (|x0| ≤ r) ≤ K̃

by an expression analogous to (2.40), we get

µT (|x0| > R) ≤ KK̃

∫
|y|>R

ψ0(y) dy. (2.42)

The hypothesis ψ0 ∈ L1 from (V3) will then conclude the proof.
Step 2: In order to prove (2.41), we change the probability space we work on.
Consider

J : C(0)(R,Rd) → C([0,∞[,R2d), (xt)t∈R 7→ (xt, x−t)t≥0, (2.43)

with C(0) from Definition 2.3.1. (Jx)0 ∈ R2d is defined via the left and right hand
side limits of xt as t→ 0, and J is a bijection after making some choice for the value
of x ∈ C(0)(R,Rd) at the point 0. We will write x = (x′, x′′) for the elements of
C([0,∞[,R2d).
The image of µ0(.|x0 = z) under J can be described explicitly. For z ∈ R2d denote
by µ̃z

0 the measure of the R2d-valued P (φ)1-process with potential Ṽ (x, y) = V (x)+
V (y), starting in z. Explicitly, if we write F̃T for the σ-field over C([0,∞[,R2d)
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generated by point evaluations at points within [0, T ], then for every F̃T -measurable,
bounded function f we have∫

f(x) dµ̃z
0(x) =

1

ψ0(z′)ψ0(z′′)

∫
e−

R T
0 (V (x′s)+V (x′′s )) dsf(x)ψ0(x

′
T )ψ0(x

′′
T ) dWz(x).

(2.44)
Here,Wz denotes 2d-dimensional Wiener measure conditional on {x0 = z = (z′, z′′)},
i.e. Brownian motion starting in z. The Markov property and time reversibility
of Brownian motion together with the Feynman-Kac formula imply that for each
z ∈ Rd, µ̃

(z,z)
0 is the image of µ0(.|x0 = z) under J , i.e.

Eµ0(f ◦ J |x0 = z) = E(z,z)
µ̃0

(f).

Here, E(z,z)
µ̃0

denotes expectation with respect to µ̃
(z,z)
0 .

Now it is easy to check that

H̃T (x) ≡ HT ◦ J−1(x) =

∫ T

0

ds

∫ T

0

dt
(
W (x′t, x

′
s, |s− t|) +W (x′′t , x

′′
s , |s− t|) +

+W (x′t, x
′′
s , |s+ t|) +W (x′′t , x

′
s, |s+ t|)

)
, (2.45)

and therefore
Eµ0

(
e−HT

∣∣∣x0 = z
)

= E(z,z)
µ̃0

(e−H̃T ). (2.46)

Thus we reduced our problem to investigating the expectation of e−H̃T with respect
to the strong Markov process µ̃z

0 as a function of the starting point z.
Step 3: First note that in the representation established in Step 2, hypothesis (2.35)
takes the form

−H̃T (x) ≤ −H̃T ◦ θτ (x) + Cτ +D for all x ∈ C([0,∞[,R2d), T, τ > 0. (2.47)

Here θτ = Jθ
(0)
τ J−1 is the usual time shift that maps (xt)t≥0 to (xt+τ )t≥0. Our

strategy is to use (2.47) together with the strong Markov property of µ̃0. For r > 0
let

τr(x) = inf{t ≥ 0 : |xt| ≤ r}
be the hitting time of the centered ball with radius r, and let Fτr be the correspond-
ing σ-field, i.e.

Fτr = {A ∈ F̃ : A ∩ {τr ≤ t} ∈ F̃t for all t ≥ 0}.

In the next step we will see that τr is finite almost surely, and thus for each x ∈ R2d,

Ex(e−H̃T ) = Ex(Ex(e−H̃T |Fτr)) ≤ Ex(Ex(e−H̃T ◦θτr eCτr+D|Fτr)) =

= Ex(eCτr+DEx(e−H̃T ◦θτr |Fτr)) = Ex(eCτr+DExτr (e−H̃T )) ≤
≤ sup

|y|≤r
Ey(e−H̃T )Ex(eCτr+D). (2.48)



56 CHAPTER 2. GIBBS MEASURES OVER BROWNIAN MOTION

All expectations above and henceforth are with respect to µ̃0. It remains to get a
good estimate on the second factor on the right hand side of (2.48) and to estimate
the supremum in the first factor against an infimum. This will be done in Steps 4
and 5.
Step 4: Here we show that there exists r > 0 and γ > 0 such that for all x ∈ R2d

we have

Ex(eCτr) ≤ 1 +
C ‖ψ0‖∞

γ

(
1

ψ0(x′)
+

1

ψ0(x′′)

)
. (2.49)

To do so, we pick γ with 0 < γ < α − C and r so large that V (x) > C + γ for all
x ∈ Rd with |x| > r/

√
2. This is possible by assumption (W2). Obviously,

{x ∈ R2d : |x| > r} ⊂ {x ∈ R2d : |x′| > r/
√

2} ∪ {x ∈ R2d : |x′′| > r/
√

2},

and with (2.44) it follows that

ψ0(z
′)ψ0(z

′′)µ̃z
0(τr > t) =

=

∫
e−

R t
0 (V (x′s)+V (x′′s )) ds1{|xs|>r ∀s≤t}ψ0(x

′
t)ψ0(x

′′
t ) dWz(x) ≤

≤
∫
e−

R t
0 V (x′s) dse−

R t
0 V (x′′s ) ds

(
1{|(x′s)|>r/

√
2 ∀s≤t} + 1{|(x′′s )|>r/

√
2 ∀s≤t}

)
×

×ψ0(x
′
t)ψ0(x

′′
t ) dWz′(x′) dWz′′(x′′) =

= ψ0(z
′′)

∫
e−

R t
0 V (x′s) ds1{|(x′s)|>r/

√
2 ∀s≤t}ψ0(x

′
t) dWz′(x′) +

+ψ0(z
′)

∫
e−

R t
0 V (x′′s ) ds1{|(x′′s )|>r/

√
2 ∀s≤t}ψ0(x

′′
t ) dWz′′(x′′) ≤

≤ (ψ0(z
′) + ψ0(z

′′)) ‖ψ0‖∞ e−(C+γ)t.

The second equality above is due the eigenvalue equation e−tH0ψ0 = ψ0 and the
Feynman-Kac formula. It follows that

µ̃z
0(τr > t) ≤

(
1

ψ0(z′)
+

1

ψ0(z′′)

)
‖ψ0‖∞ e−(C+γ)t,

and using the equality

Ez(eCτr) = 1 +

∫ ∞

0

CeCtEz(τr > t) dt

we arrive at (2.49).
Step 5: Let r > 0 be as in Step 4. We will show that there exists M > 0 such that

sup
|y|≤r

Ey(e−H̃T ) ≤M inf
|y|≤r

Ey(e−H̃T ) (2.50)
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uniformly in T > 0. Denote by Pt(x,y) the transition density from x to y in time
t of the process µ̃0, and by Kt(x, y) the integral kernel of e−tH . The Feynman-Kac
formula implies

Eµ0(f(xt)|F{0})(y) =
1

ψ0(y)

∫
Kt(y, z)ψ0(z)f(z) dz (y ∈ Rd), (2.51)

and together with (2.44) this shows

Pt(x,y) =
ψ0(y

′)ψ0(y
′′)

ψ0(x′)ψ0(x′′)
Kt(x

′, y′)Kt(x
′′, y′′). (2.52)

ψ0 and Kt are both uniformly bounded and bounded away from zero on compact
sets (cf. (S2) in Appendix A.2), thus for each R > 0 the quantity

St(R, r) = sup

{
Pt(x, z)

Pt(y, z)
: x,y, z ∈ R2d, |x| ≤ r, |y| ≤ r, |z| ≤ R

}
is finite. Defining H̃1

T like in (2.45) but with the integrals starting at 1 rather than
at 0, we see from (2.36) that

−H̃T (x)− 4C∞ ≤ −H̃1
T (x) ≤ −H̃T (x) + 4C∞

for all x and all T . Putting B = {|x1| < R}, for each y with |y| < r we have

Ey(e−H̃T ) ≤ e4C∞Ey(1Be
−H̃1

T ) + eC+DEy(1Bce−H̃T ◦θ1). (2.53)

Defining H̄T as in (2.45) but with |s+ t+2| appearing instead of |s+ t| everywhere,
in the first term on the right hand side of (2.53) we find

Ey(1Be
−H̃1

T ) =

∫
|z|<R

P1(y, z)Ez(e−H̄T−1) dz ≤

≤ S1(R, r)

∫
|z|≤R

P1(x, z)Ez(e−H̄T−1) dz =

= S1(R, r)Ex(1Be
−H̃1

T ) ≤ S1(R, r)e
4C∞Ex(e−H̃T ) (2.54)

for each x with |x| ≤ r. Turning to the second term on the right hand side of (2.53),
equations (2.48) and (2.49) give

Ey(1Bce−H̃T ◦θ1) =

∫
|z|>R

P1(y, z)Ez(e−H̃T ) dz ≤

≤ sup
|x|≤r

Ex(e−H̃T )

∫
|z|>R

P1(y, z)Ez(eCτr+D) dz ≤ (2.55)

≤ sup
|x|≤r

Ex(e−H̃T )eD
∫
|z|>R

P1(y, z)

(
1 +

C ‖ψ0‖∞
γ

(
1

ψ0(z′)
+

1

ψ0(z′′)

))
dz.
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By (2.52) and the eigenvalue equation, we have∫
P1(y, z)

(
1

ψ0(z′)
+

1

ψ0(z′′)

)
dz =

=
1

ψ0(y′)

∫
K1(y

′′, z) dz +
1

ψ0(y′′)

∫
K1(y

′, z) dz. (2.56)

By (S3) from Appendix A.2, the integrals appearing above are bounded as functions
of y′ and y′′, respectively, and thus the right hand side of (2.56) is uniformly bounded
on {y : |y| < r}. This implies that there exists R̄ > 0 and δ < 1 such that∫

|z|>R̄
P1(y, z)

(
1 +

C ‖ψ0‖∞
γ

(
1

ψ0(z′)
+

1

ψ0(z′′)

))
dz ≤ e−(C+2D)δ

uniformly on {y : |y| < r}. Plugging this result together with (2.54) into (2.53), we
arrive at

Ey(e−H̃T ) ≤ S1(R̄, r)e
8C∞Ex(e−H̃T ) + δ sup

|z|≤r
Ez(e−H̃T ), (2.57)

which is valid for all x,y with |x|, |y| ≤ r. By taking the supremum over y and the
infimum over x in (2.57) and rearranging, we find

sup
|y|≤r

Ey(e−H̃T ) ≤ S1(R̄, r)e
8C∞

1− δ
inf
|y|≤r

Ey(e−H̃T ),

which concludes Step 5 and the proof. �
Putting things together, we easily arrive at

Theorem 2.3.8 Assume (V1), (V2), (V3), (W1) and (W2). Then for the potential
W and the reference measure µ0 an infinite volume Gibbs measure exists.

Proof: By Theorem 2.3.7 and Proposition 2.3.6, e.g. the sequence (µn)n∈N has a
cluster point µ. By Proposition 2.1.12, µ is an infinite volume Gibbs measure. �

Let us denote by µ any Gibbs measure obtained via Theorem 2.3.8. Due to the
good control on the stationary density we obtain in Theorem 2.3.7, we have the
following estimate on the growth of paths under µ.

Lemma 2.3.9 Let f : R+ → R+ be monotone increasing with f(x) → ∞ as x →
∞, and suppose that

∞∑
n=1

∫
|y|>f(n)

ψ0(y) dy <∞ (2.58)

Then for µ-almost every path x ∈ C(R,Rd), we have

lim sup
n→∞

|xn|
f(n)

≤ 1.



2.3. NON-MARKOVIAN INFINITE VOLUME GIBBS MEASURES 59

Proof: The first Borel-Cantelli lemma will yield the result once we have checked
that

∞∑
n=1

µ(|xn| > f(n)) <∞. (2.59)

By the stationarity of µ and equation (2.42), there exists a constant M such that

µ(|xn| > f(n)) = µ(|x0| > f(n)) ≤M

∫
|y|>f(n)

ψ0(y) dy

for n large enough, and the claim follows by assumption (2.58). �
From Theorem 2.2.10 we infer that for s ≥ 0 the estimate

lim inf
|x|→∞

V (x)/|x|2s > 0

implies the existence of constants A > 0, β > 0 such that

ψ0(y) ≤ A exp(−β|y|s+1)

for all y ∈ Rd. In this case, Lemma 2.3.9 implies

lim sup
n→∞

|xn|
(γ ln (n))1/(s+1)

= 0 (2.60)

for each γ > 1/β and µ-almost all x ∈ C(R,Rd). Using the cluster expansion and
restricting to s > 1, [29] prove (2.60) with n ∈ N replaced by t ∈ R, which is slightly
stronger.

Although we will not do it here, our method from Theorem 2.3.7 can be easily
adapted to the lattice context, where it yields a new way of proving existence of
Gibbs measures for one-dimensional systems of unbounded spins as given in Example
2.1.1. For such systems, extremely powerful methods are already available: there
is the superstability estimate by D. Ruelle [43], applied in [28], which has the big
advantage of not being restricted to one-dimensional systems; there are the results
of R. L. Dobrushin [11, 12], which are valid only for one-dimensional systems, but
extremely general otherwise. However, superstability corresponds to rapidly growing
single site potential, while one of Dobrushin’s few restrictions is that the interaction
energy between left and right half-space must be bounded. Thus our method covers
some new situations in the discrete context also.
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Chapter 3

Ground state expectations for
Nelson’s model

3.1 The existence question

The main results of this chapter will appear in Sections 3.2 and 3.3, where we use
Gibbs measures to evaluate ground state expectations of the Nelson Hamiltonian.
Before we do so, however, we should discuss existence of the ground state. This
discussion is done in the present section, together with an overview about known
results concerning the connections of Gibbs measures with the question of existence
of a ground state.

For convenience, we repeat some notions from Chapters 1 and 2.

3.1.1 The setup:

a) HF is the Hamiltonian of Nelson’s model in Fock space. We have

HF = Hp ⊗ 1 + 1⊗Hf +HI,

where Hp is defined in (1.31), Hf in (1.29) and HI in (1.30). Recall that we
also assume (1.26) - (1.28) throughout.

b) The Nelson Hamiltonian in function space is given by

H = Θ−1HFΘ,

where Θ is the combination of the ground state transform and the Wiener-Itô-
Segal isomorphism, cf. Proposition 1.5.4 and the text below. In the language
of function space, (1.28) asserts that we have to have % ∈ K and |B|% ∈ K.

c) H acts in L2(P0), where P0 = N0 ⊗ G, N0 is the stationary measure of the
P (φ)1-process corresponding to Hp, and G is the stationary measure of the
infinite dimensional Ornstein-Uhlenbeck process given in Definition 1.4.8.

61
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d) The finite volume Gibbs measures NT and PT are given in Remark 2.1.9.
Their infinite volume limits are denoted by N and P , cf. Corollary 2.2.5. The
stationary measures of N and P are denoted by N and P.

e) Two special choices of the parameters ω and % are particularly important and
will be singled out here. Taking

ω(k) = |k| and %̂(k) = e1{r<|k|<R}

with 0 < r � 1 and R � 1, we arrive at the massless Nelson model
with (standard) infrared cutoff r, ultraviolet cutoff R and coupling strength e.
Taking

ω(k) =
√
|k|2 +m2 and %̂(k) = e1{|k|<R}

with m > 0 and R � 1, we get the massive Nelson model with mass m,
ultraviolet cutoff R and coupling strength e.

Proving existence of a ground state Ψ ∈ L2(P0) of the operator H (or, equiva-
lently, existence of a ground state ΨF of the operator HF) is a difficult task in case
essinfk∈Rdω(k) = 0. The reason is that in this case, H has no spectral gap, i.e.
the infimum of the essential spectrum of H is equal to the infimum of its whole
spectrum. The best result available in our context is

Theorem 3.1.2 [48] Let H be the Nelson Hamiltonian. In addition to (1.26) -
(1.28) assume

(i): I =

∫
|%̂|2

2ω3
dk <∞. This condition will be referred to as the infrared condi-

tion.

(ii): Σ− Ep >

∫
|%̂|2k2

ω(2ω + k2)
dk,

where Σ is the infimum of the essential spectrum of Hp, and Ep = inf specHp.

Then H has a ground state Ψ ∈ L2(P0).

In [17] more general particle-field couplings are allowed. When specialized to our
setting, the assumptions in [17] correspond to Σ = ∞.

(ii) is essentially a restriction on the coupling strength and is needed for currently
available proofs. Physically, one would assume that it is possible to do without (ii).
Indication in this direction has been given by Griesemer et. al. [20], who study a
slightly different model. Note however that if lim|q|→∞ V (q) = ∞, then Σ = ∞, and
(ii) follows from (1.26) - (1.28).

Condition (i) has already been discussed in 1.5.15, where an explanation for the
name ‘infrared condition’ was given, and also in Remark 2.3.3 c) in the context
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of Gibbs measures. In the language of function space, (i) reads |B|2% ∈ K. The
quantity I also appears explicitly in many of the estimates of Section 3.3. It has
been shown in [30] that, given some technical assumptions, the infrared condition
is also necessary for the existence of a ground state Ψ ∈ L2(P0). Interestingly, if (i)
fails, we have a scenario where the local limit P of the sequence

dPT (q, φ) =
1

ZT
exp

(
−
∫ T

−T
φs(%q(s)) ds

)
dP0(q, φ) (3.1)

from (2.16) exists, but is not locally absolutely continuous to P0. In fact, P|F{0} is
then singular with respect to P0 = P0|F{0} . According to our definition, P is thus
not a Gibbs measure relative to the reference measure P0. We will spend the rest of
this section with a slightly informal discussion of this phenomenon.

In order to show that PT converges locally, fix q̄ ∈ C(R,Rd) in (3.1) and write
P q̄
T for the measure PT conditional on {q = q̄}. P q̄

T is a Gaussian measure with
mean ∫

φt(f) dP q̄
T (φ) = M t,q̄

T (f) = −
∫ T

−T
ds

∫
dk

f̂(k)%̂(k)e−ikq̄s

2ω(k)
e−ω(k)|t−s|

(f ∈ K, t ∈ R) and covariance equal to that of G. Moreover,∫
F (q, φ) dPT (q, φ) =

∫ (∫
F (q, φ) dPq

T (φ)

)
dNT (q), (3.2)

where NT is from (2.17). In words, PT is a mixture of Gaussian measures that differ
from G only by their mean value.

By the results of Section 2.3, NT converges locally to some limiting measure N
in many cases where (i) from Theorem 3.1.2 fails. By the convergence theory for
Gaussian measures ([8], Section 3.8), it is now sufficient to show that the set

M = {M t,q̄
T : T ∈ R, t ∈ [−S, S], q̄ ∈ C(R,Rd)} ⊂ Φ (3.3)

is relatively compact in Φ, cf. [30] for details. If we do assume the infrared condition
for a moment, from∫ T

−T
ds

∫
dk

∣∣∣∣∣ f̂(k)%̂(k)e−ikq̄s

2ω(k)
e−ω(k)|t−s|

∣∣∣∣∣
≤

∫ ∞

−∞
ds

∫
|f̂ ||%̂|e−ω|t−s|

2ω
dk =

∫
|f̂ ||%̂|
ω2

dk ≤

≤ ‖f‖K
(∫

2|%̂|2

ω3
dk

)1/2

= 2 ‖f‖K
√
I <∞, (3.4)
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it follows that M is bounded in K, and since the embedding K → Φ is compact,
M is relatively compact in Φ. Of course, we are more interested in the case where
the infrared condition is not fulfilled. Then we need to enlarge Φ slightly compared
to the setup from Chapter 1. While there we required A−1 and |B|−1A−1 to be
Hilbert-Schmidt operators, we now also assume that |B|A−1 is a compact operator
in K. By our conditions on ω, D(|B|) ∩ D(|B|−1) is dense in K, and thus we can
construct A easily with the method given after Proposition 1.4.11. [30] gives a
concrete example of such an operator. A calculation analogous to (3.4) shows that
the set {|B|−1φ : φ ∈ M} is bounded in K, and thus {‖A|B|−1φ‖Φ : φ ∈ M} is
bounded. Our additional assumption now gives relative compactness of M in Φ.
We summarize:

Proposition 3.1.3 Under the assumptions made above, PT converges locally to a
probability measure P. For F ∈ L1(P),∫

F (q, φ)dP(q, φ) =

∫ (∫
F (q, φ)dPq(φ)

)
dN (q), (3.5)

where Pq is the Gaussian measure on Φ with mean∫
φt(f) dPq(φ) = M t,q(f) = −

∫ ∞

−∞
ds

∫
dk

f̂(k)%̂(k)eikqs

2ω(k)
e−ω(k)|t−s|

and covariance equal to that of G.

In the case of the massless Nelson model in space dimension d = 3, I = ∞ implies
that P|F{0} is singular with respect to P0. The reason for this lies in formula (3.5):

For fixed q ∈ C(R,Rd) with |qs|2 ≤ C|s|, one uses the inequality

cos(kqs) ≥ 1− 1

2
|qs|2|k|2 ≥ 1− C

2
|s||k|2

in a calculation similar to (3.4) to show that the mean of Pq|F{0} is not an element of
K. The Cameron-Martin criterion (cf. [8], Theorem 2.4.5) then implies that Pq|F{0}
and P0 are mutually singular. A similar argument shows that for each q, q̃ with the
above growth restriction, Pq|F{0} and P q̃|F{0} are mutually absolutely continuous,
implying the existence of a set N ∈ F0 with P0(N) = 1 but Pq(N) = 0 for all q
growing not faster than a square root. Since by results like Lemma 2.3.9, the latter
set of paths q carries full N-measure, Fubini’s theorem and (3.5) imply P(N) = 0,
proving the claim.

P is, however, a Gibbs measure with respect to a different reference measure
P1 (and a different interaction). P1 is obtained from P0 by shifting the mean of
the Gaussian part of P0 so that P1 is mutually absolutely continuous with Pq|F{0}
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for each q not growing too fast. We refer to [31] for details. It is also shown there
that the Nelson Hamiltonian has a ground state in L2(P1) in this case. The proof
uses specific features of the massless Nelson model and assumes a rapidly growing
potential in Hp. These results give rise to an interesting

3.1.4 Open question: Suppose that a Hamiltonian H = H0 + V gives rise to
a family of finite volume Gibbs measures via a Feynman-Kac formula, analogously
to PT . Suppose further that the local limit of the finite volume Gibbs measures
exists and is locally absolutely continuous with respect to the reference process with
generator H0. (In other words, assume that an infinite volume Gibbs measure for
the potential V and the reference process with generator H0 exists.)
Is this a sufficient condition for the existence of a ground state of H in the L2-space
over the stationary measure of the reference process?

We would guess that the answer is yes, but unfortunately were unable to prove it.
Thus for the rest of this work, we will assume that the infrared condition is fulfilled.

3.2 Ground state expectations as Gibbs averages

We now establish an explicit formula for writing expectations 〈Ψ, LΨ〉L2(P0) of an
operator L as Gibbs averages with respect to N . The results of this and the next
section come from [4].

We have the following

3.2.1 Standing assumptions:

(i): H has a ground state Ψ in L2(P0).

(ii): The infrared condition is fulfilled, i.e.

I = 2 sup
q∈C(R,Rd)

∫ 0

−∞
ds

∫ ∞

0

dt |W (qs − qt, s− t)| =
∫
|%̂|2

2ω3
dk <∞. (3.6)

In order to state our main theorem, we introduce some special elements of K. For
each T ∈ [0,∞], q ∈ C(R,Rd) we define

f+
T,q = −

∫ T

0

e−
1
2
|s||B|−2

%q(s) ds,

f−T,q = −
∫ 0

−T
e−

1
2
|s||B|−2

%q(s) ds,
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and write f±q (k) for f±∞,q(k). More explicitly, we have

f̂+
T,q(k) = −

∫ T

0

%̂(k)e−ikqse−ω(k)|s| ds,

f̂−T,q(k) = −
∫ 0

−T
%̂(k)e−ikqse−ω(k)|s| ds,

〈
f−q , f

+
q

〉
K

= −2

∫ 0

−∞
ds

∫ ∞

0

dtW (qt − qs, t− s), (3.7)

and ∥∥f±q ∥∥2

K
≤
∫
|%̂(k)|2

2ω(k)3
dk = I <∞. (3.8)

Thus indeed f±q ∈ K.

Theorem 3.2.2 Let L be a bounded operator on L2(G). Then

〈Ψ, (1⊗ L)Ψ〉L2(P0) =

∫ 〈
:exp(φ(f−q )): , L :exp(φ(f+

q )):
〉
L2(G)

×

× exp

(
2

∫ 0

−∞
ds

∫ ∞

0

dtW (qt − qs, t− s)

)
dN (q).(3.9)

Proof: Put

ΨT :=
1

‖e−TH1‖
e−TH1.

Then by the Feynman-Kac-Nelson formula, we have in L2-sense

ΨT (q̄, φ̄) =
1√
ZT

∫
exp

(
−
∫ T

0

φs(%q(s)) ds

)
dP q̄,φ̄

0 (q, φ), (3.10)

where P q̄,φ̄
0 = N q̄

0 ⊗Gφ̄ denotes the measure P = N0⊗G conditional on {q0 = q̄, φ0 =
φ̄}. Gφ̄ is a Gaussian measure with mean

M φ̄,t(f) ≡
∫
φt(f) dGφ̄(φ) = φ̄(e−

1
2
|t||B|−2

f) (t ∈ R, f ∈ K) (3.11)

and covariance∫
φt(f)φs(g) dGφ̄(φ)−M φ̄,t(f)M φ̄,s(g) =

∫
f̂ ĝ

2ω

(
e−ω|t−s| − e−ω(|t|+|s|)) dk; (3.12)

(3.11) and (3.12) follow from Lemma 1.4.9, cf. also the proof of Proposition 1.4.10.
Now the integration with respect to Gφ̄ in (3.10) can be carried out with the result

ΨT (q̄, φ̄) =
1√
ZT

∫
exp(φ̄(f+

T,q))× (3.13)

× exp

(
1

2

∫ T

0

ds

∫ T

0

dt

∫
dk
|%̂(k)|2

2ω(k)
cos(k(qs − qt))

(
e−ω(k)|t−s| − e−ω(k)(t+s)

))
dN q̄

0 .
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By Proposition 1.5.9 a) we have,

exp(φ̄(f+
T,q)) = :exp(φ̄(f+

T,q)): exp

(
1

2

∫ T

0

ds

∫ T

0

dt

∫
dk
|%̂(k)|2

2ω(k)
cos(k(qs − qt))e

−ω(k)(t+s)

)
,

and hence

ΨT (q̄, φ̄) =
1√
ZT

∫
:exp(φ̄(f+

T,q)): exp

(
−
∫ T

0

ds

∫ T

0

dtW (qs − qt, s− t)

)
dN q̄

0 .

(3.14)
By the time reversibility of N q̄

0 , also

ΨT (q̄, φ̄) =
1√
ZT

∫
:exp(φ̄(f−T,q)): exp

(
−
∫ 0

−T
ds

∫ 0

−T
dtW (qs − qt, s− t)

)
dN q̄

0

(3.15)
holds. Now we write (3.15) for the left entry and (3.14) for the right entry of the
scalar product 〈ΨT , (1⊗ L)ΨT 〉 and use the fact that for F[0,∞[-measurable f, g ∈
L1(N0), ∫ (∫

f dN q̄
0

∫
g dN q̄

0

)
dN0(q̄) =

∫
f(q+)g(q−) dN0(q)

(with q+
s = qs and q−s = q−s for s ≥ 0), to write 〈ΨT , (1⊗ L)ΨT 〉 as an integral with

respect to N0. Then we add and subtract the term 2
∫ 0

−T ds
∫ T

0
dtW (qs− qt, s− t) in

the exponent and incorporate the term with the minus sign into the measure NT ,
cf. (2.17). The result reads

〈ΨT , (1⊗ L)ΨT 〉L2(P0) =

∫ 〈
:exp(φ(f−T,q)): , L :exp(φ(f+

T,q)):
〉
L2(G)

× (3.16)

× exp

(
2

∫ 0

−T
ds

∫ T

0

dtW (qt − qs, t− s)

)
dNT (q).

This is the finite T version of (3.9). It remains to justify the passing to the limit
T → ∞. On the left hand side of (3.16), this is immediate since ΨT → Ψ in
L2(N0 ⊗ G) and L is continuous. On the right hand side, we already know that
NT → N in the topology of local convergence, and thus it only remains to show
that the integrand converges uniformly in q ∈ C(R,Rd). For the second factor of
the integrand this is a consequence of (3.6). As for the first factor, we find that for
ω(k) 6= 0,

|f̂±T,q(k)| ≤
|%̂(k)|
ω(k)

uniformly in T and q,

and

f̂±T,q(k)
T→∞−→ f̂±q (k) uniformly in q.
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Thus :exp(φ(f+
T,q)):→ :exp(φ(f+

q )): in L2(G) and uniformly in q by dominated

convergence. Since the same argument applies to f−T,q and L is continuous, the claim
follows. �

Most operators of physical interest are not bounded. Therefore we need to extend
formula (3.9) to unbounded operators.

Proposition 3.2.3 Let L be a self-adjoint operator in L2(G) with∫ ∥∥L :exp(φ(f±q )):
∥∥2

L2(G)
dN (q) <∞. (3.17)

Then Ψ ∈ D(1⊗ L), and (3.9) holds.

Proof: Let E be the projection valued measure corresponding to L, and let LN =∫ N
−N λ dE(λ) for N ∈ N. Then LN is a bounded operator, hence (3.9) holds for LN .

Using (3.6) and the Cauchy-Schwarz inequality, we have

‖(1⊗ LN)Ψ‖2
L2(P0)

=

∫ 〈
:exp(φ(f−q )): , L2

N :exp(φ(f+
q )):

〉
L2(G)

e2
R 0
−∞ ds

R ∞
0 dtW (qt−qs,t−s)dN (q)

≤ eI
∫ ∥∥LN :exp(φ(f−q )):

∥∥
L2(G)

∥∥LN :exp(φ(f+
q )):

∥∥
L2(G)

dN (q)

≤ eI
∫ ∥∥L :exp(φ(f−q )):

∥∥
L2(G)

∥∥L :exp(φ(f+
q )):

∥∥
L2(G)

dN (q),

which is finite according to (3.17). This shows that Ψ ∈ D(1⊗L) and (1⊗LN)Ψ →
(1⊗ L)Ψ as N →∞. On the other hand, it follows from (3.17) that

:exp(φ(f±q )):∈ D(L) for N -almost all q.

From this we conclude〈
:exp(φ(f−q )): , LN :exp(φ(f+

q )):
〉
L2(G)

→
〈
:exp(φ(f−q )): , L :exp(φ(f+

q )):
〉
L2(G)

for N almost all q as N →∞. Since by Proposition 1.5.9 b) we have〈
:exp(φ(f−q )): , LN :exp(φ(f+

q )):
〉
L2(G)

≤
∥∥ :exp(φ(f−q )):

∥∥
L2(G)

∥∥LN :exp(φ(f+
q )):

∥∥
L2(G)

≤ eI/2
∥∥L :exp(φ(f+

q )):
∥∥
L2(G)

for all q, and the right hand side of the above is N -integrable, the dominated con-
vergence theorem implies∫ 〈

:exp(φ(f−q )): , LN :exp(φ(f+
q )):

〉
L2(G)

e2
R 0
−∞ ds

R ∞
0 dtW (qt−qs,t−s)dN (q) →

→
∫ 〈

:exp(φ(f−q )): , L :exp(φ(f+
q )):

〉
L2(G)

e2
R 0
−∞ ds

R ∞
0 dtW (qt−qs,t−s)dN (q)
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as N →∞. This finishes the proof. �
We now present one minor extension and two important special cases of (3.9).

Corollary 3.2.4 Let g ∈ L∞(Rd), and suppose L satisfies the assumptions of
Proposition 3.2.3. Then

〈Ψ, (g ⊗ L)Ψ〉L2(P0) =

∫ 〈
:exp(φ(f−q )): , L :exp(φ(f+

q )):
〉
L2(G)

×

×g(q0) exp

(
2

∫ 0

−∞
ds

∫ ∞

0

dtW (qt − qs, t− s)

)
dN (q).

Here g is again used to denote the operator of multiplication with g.

Note that if L is chosen to be the identity operator, then we arrive at 〈Ψ, gΨ〉L2(P0) =∫
g(q0) dN , a formula that also follows from Corollary 2.2.5.

Corollary 3.2.5 For β > 0 and g ∈ K, put

M(β) =
〈
Ψ, eβφ(g)Ψ

〉
L2(P0)

.

M is the moment generating function for the random variable φ 7→ φ0(g) under P,
and

M(β) =

∫
eβφ0(g) dP(q, φ) (3.18)

=

∫
exp

(
β2

2

∫
|ĝ|2

2ω
dk − β

∫ ∞

−∞
ds

∫
dk

%̂(k)ĝ(k)e−ikqs

2ω(k)
e−ω(k)|s|

)
dN .

By (3.4), M(β) is finite for all β, and hence

〈Ψ, φ(g)nΨ〉L2(P0) =
dn

dβn
M(β)|β=0 for all n ∈ N. (3.19)

Note that, although (3.18) can in principle be deduced from Proposition 3.2.3, it can
be obtained more easily by using (3.5), i.e. by fixing q ∈ C(R,Rd) and integrating
the function φ 7→ eφ0(g) with respect to the conditional Gaussian measure.

The next statement deals with second quantization and differential second quan-
tization of operators. Recall that θ : L2(G) → F denoted the Wiener-Itô-Segal
isomorphism, cf. 1.5.4.

Corollary 3.2.6 Let L be a bounded self-adjoint operator on L2(Rd), and write
Γ̃(L) = θ−1Γ(L)θ and dΓ̃(L) = θ−1dΓ(L)θ. Then Ψ ∈ D(Γ̃(L)), Ψ ∈ D(dΓ̃(L)) and〈

Ψ, Γ̃(L)Ψ
〉
L2(P0)

=

∫
exp

(〈
f−q , B

−1LBf+
q

〉
K

)
e2

R 0
−∞ ds

R ∞
0 dtW (qs−qt,s−t) dN (q),〈

Ψ, dΓ̃(L)Ψ
〉
L2(P0)

=

∫ 〈
f−q , B

−1LBf+
q

〉
K
dN (q). (3.20)



70 CHAPTER 3. GROUND STATE EXPECTATIONS

Proof: First note that by (3.8),∥∥B−1LBf±q
∥∥
K

=
∥∥LBf±q ∥∥L2(Rd)

≤ ‖L‖
∥∥f±q ∥∥K

is uniformly bounded in q. On the other hand,∥∥∥Γ̃(L) :exp(φ(f±q )):
∥∥∥2

L2(G)
= exp

(∥∥B−1LBf+
q

∥∥2

K

)
follows directly from Proposition 1.5.9 b), c). Furthermore,∥∥∥dΓ̃(L) :exp(φ(f±q )):

∥∥∥2

L2(G)
=
(∥∥B−1LBf±q

∥∥2

K
+
〈
f±q , B

−1LBf±q
〉2
K

)
e‖f

±
q ‖2

K

can be obtained from the definitions of differential second quantization (1.25), Wick
exponentials (Definition 1.5.8) and of dΓ̃(L) above. Since∥∥B−1LBf

∥∥
K

= ‖LBf‖L2(Rd) ≤ ‖L‖ ‖f‖K

for all f ∈ K, (3.17) is fulfilled, and Proposition 3.2.3 now gives Ψ ∈ D(Γ̃(L)) and
Ψ ∈ D(dΓ̃(L)). Now that this is established, formulas (3.20) follow directly from
(3.9) and Proposition 1.5.9 b) - d) and (3.7). �

3.3 Bounds on ground state expectations

We will now apply the results of the previous section in order to investigate some
qualitative properties of the ground state of H. Alternatively (and equivalently), we
will instead refer to the ground state ΨF = ΘΨ of HF whenever this is convenient.
Recall that I <∞, the infrared constant, was defined in (3.5).

Example 3.3.1 Boson number distribution
Let Pn be the projection onto the n-th Fock space component (or n-boson sector).
Then P̃n = θPnθ

−1 is the projection onto the closure of the subspace spanned by
{ :φ(f)n: , f ∈ K} ⊂ L2(G). By the definition of Wick exponentials, we have〈

:exp(φ(f−q )): , P̃n :exp(φ(f+
q )):

〉
L2(G)

=
1

n!

〈
f+
q , f

−
q

〉n
K
,

and with (3.7) and Theorem 3.2.2 we find

pn ≡
〈
Ψ, 1⊗ P̃nΨ

〉
L2(P0)

=

∫
1

n!

(
−2

∫ 0

−∞
ds

∫ ∞

0

dtW (qs − qt, s− t)

)n
×

× exp

(
2

∫ 0

−∞
ds

∫ ∞

0

dtW (qs − qt, s− t)

)
dN .
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pn is the probability of finding n bosons in the ground state of HF . Obviously,

pn ≤
In

n!
eI . (3.21)

Denoting by N = dΓ(1) the number operator, the superexponential bound (3.21)
implies 〈

ΨF , 1⊗ eαNΨF
〉
L2(Rd)×F <∞ for each α > 0

and is useful in the context of scattering theory [24].
Let us now assume in addition that W (q, t) < 0 for all q and all t. This is true e.g.
for the massive Nelson model, cf. 3.1.1 e). In this case there exists D ≤ I with

Dn

n!
e−I ≤ pn ≤

In

n!
. (3.22)

The right hand side of (3.22) is again obvious, and the left hand side follows from

pn ≥ 1

n!
e−I
∫ (

−2

∫ 0

−∞
ds

∫ ∞

0

dtW (qs − qt, s− t)

)n
dN

≥ 1

n!
e−I
(
−
∫

2

∫ 0

−∞
ds

∫ ∞

0

dtW (qs − qt, s− t) dN
)n

.

D is then the expectation of the double integral above.

In the next two examples we will look at the mean value and variance of the random
variable φ 7→ φ0(g) under P for g ∈ K, using the results of Corollary 3.2.5.

Example 3.3.2 Average field strength
For n = 1, (3.19) yields

〈Ψ, φ(g)Ψ〉L2(P0) = −
∫
dk

∫ ∞

−∞
ds
%̂(k)ĝ(k)

2ω(k)
e−ω(k)|s|

(∫
e−ikqs dN (q)

)
= −

∫
dk

∫
dqψ2

0(q)λ
2(q)

%̂(k)ĝ(k)e−ikq

ω(k)2
, (3.23)

where λ2(q) =
∫

Ψ2(φ, q) dG(φ) is the stationary density of N with respect to N0,
and ψ2

0 is the density of N0 with respect to Lebesgue measure (and the square of the
ground state of Hp).
Writing χ = ψ2

0λ
2 for the position density of the particle, and taking g to be a delta

function in momentum space and in position space, respectively, we find

〈Ψ, φ(k)Ψ〉L2(P0) = − %̂(k)χ̂(k)

(2π)d/2ω2(k)
(k ∈ Rd),
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and

〈Ψ, φ(q)Ψ〉L2(P0) = (χ ∗ Vω ∗ %)(q) (q ∈ Rd), (3.24)

respectively. Here Vω denotes the Fourier transform of −1/ω2 and is the Coulomb
potential for massless bosons, i.e. for ω(k) = |k|. (3.24) is the classical field gen-
erated by a particle with position distribution χ(q) dq. Note that equality (3.23)
follows also from the equations of motion and the stationarity of Ψ.

Example 3.3.3 Field fluctuations
For n = 2, (3.19) becomes

〈
Ψ, φ(g)2Ψ

〉
L2(P0)

=

∫
|ĝ(k)|2

2ω(k)
dk +

∫ (∫ ∞

−∞
ds

∫
dk
%̂(k)ĝ(k)eikqs

2ω(k)
e−ω(k)|s|

)2

dN .

By using the previous result and the Cauchy-Schwarz inequality, we find that

〈
Ψ, φ(g)2Ψ

〉
L2(P0)

− 〈Ψ, φ(g)Ψ〉2L2(P0) ≥
∫
|ĝ|2

2ω
dk =

∫
φ(g)2 dG(φ).

The latter term represents the fluctuations of the free field. We thus see that fluc-
tuations increase by coupling the field to the particle.

We now treat special cases of Corollary 3.2.6.

Example 3.3.4 Average number of bosons at given momentum
For real-valued g ∈ L∞ consider∫

a∗kakg(k) dk = dΓ(g),

cf. Definition 1.3.2. By Corollary 3.2.6, we have Ψ ∈ D(dΓ̃(g)). With g chosen

to be the indicator function of some set M ⊂ Rd,
〈
Ψ, dΓ̃(g)Ψ

〉
L2(P0)

is the ex-

pected number of bosons with momentum within M . By (3.20) and the equality
(B−1gBf)b= gf̂ ,〈

Ψ, dΓ̃(g)Ψ
〉
L2(P0)

=

∫
dk
|%̂(k)|2

2ω(k)
g(k)

∫ 0

−∞
ds

∫ ∞

0

dt e−ω(k)(t−s)
∫

cos(k(qt − qs)) dN

(3.25)
On the one hand, from cos(kx) ≤ 1 we get〈

Ψ, dΓ̃(g)Ψ
〉
L2(P0)

≤
∫
|%̂(k)|2

2ω(k)3
g(k) dk. (3.26)
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(3.26) is proven in [6] using the pullthrough formula.
On the other hand, from 1− (k2x2)/2 ≤ cos(kx) we get∫

cos(k(qt − qs)) dN ≥ 1− k2

2

(∫
(q2
t + q2

s − 2qtqs) dN
)

≥ 1− k2

∫
q2ψ2

0(q)λ
2(q) dq.

The last inequality above follows from∫
qsqt dN =

〈
Ψq, e−|t−s|(H−E0)Ψq

〉
L2(P0)

=
∥∥e−(|t−s|/2)(H−E0)qΨ

∥∥2

L2(P0)
≥ 0.

Writing C =
∫
q2ψ2

0(q)λ
2(q) dq, we have for g ≥ 0 that〈

Ψ, dΓ̃(g)Ψ
〉
L2(P0)

≥
∫
|%̂(k)|2

2ω(k)3
(1− Ck2)g(k) dk.

The above results can be compactly (and somewhat formally) written as

|%̂(k)|2

2ω(k)3
(1− Ck2) ≤ 〈ΨF , 1⊗ a∗kakΨF〉L2(Rd)×F ≤

|%̂(k)|2

2ω(k)3
. (3.27)

Here, a∗kak denotes the formal expression dΓ(δ(· − k)). The quantity in the middle
of (3.27) is the Lebesgue density at momentum k of the expected number of bosons.
In particular, for the 3-dimensional massless Nelson model (cf. 3.1.1 e)) one can see
from the lower bound how the infrared divergence occurs. Letting r → 0 there, the
expected number of bosons in the ground state with momenta in a neighborhood of
0 diverges.

Example 3.3.5 Average number of bosons at given position
Consider now the operator L = g(−i∇) in L2(Rd), with real-valued g ∈ L∞. If g

is the indicator of some bounded set M ⊂ Rd, 〈ΨF , dΓ(L)ΨF〉L2(Rd)×F measures the
expected number of bosons with position within M . It is common to write

dΓ(g(−i∇)) =

∫
a∗qaqg(q) dq.

In order to apply Corollary 3.2.6, we calculate〈
f−q , B

−1LBf+
q

〉
K

=
〈
Bf−q , LBf

+
q

〉
L2(Rd)

=
〈
(Bf−q )∨, g(Bf+

q )∨
〉
L2(Rd)

,

where f∨ denotes the inverse Fourier transform of f . We have

(Bf+
q )∨(x) =

1

(2π)d/2

∫ ∞

0

ds

∫
%̂(k)√
2ω(k)

eik(qs+x)e−ω(k)|s| dk,
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and consequently

〈
f−q , B

−1LBf+
q

〉
K

=
1

(2π)d

∫ 0

−∞
ds

∫ ∞

0

dt

∫
dk

∫
dk′

%̂(k)%̂(k′)√
2ω(k)

√
2ω(k′)

×

×ei(k′qt−kqs)e−ω(k)|t|−ω(k′)|s|
∫
dx g(x)eix(k−k

′) ≤

≤ 1

(2π)d

(∫
|%̂|

(2ω)3/2
dk

)2

‖g‖L1(Rd) = (∗).

In case of the massless Nelson model (with coupling strength equal to one for con-
venience), we have

(∗) ≤ 1

(2π)d

∫
|%̂|2

2ω
dk

∫
|%̂|2

(2ω)2
dk ‖g‖L1(Rd) =

1

(2π)d
‖%‖2

K ‖|B|%‖
2
K ‖g‖L1(Rd) .

We thus see that the number of Bosons with position in a set M ⊂ Rd is bounded
by a multiple of the volume of M . Moreover, it is interesting to note that this
bound is insensitive to formally removing the infrared cutoff. On the other hand,
the total number of bosons in the ground state is obtained by taking g = 1 in this
or the previous example, and we see from (3.27) that this quantity diverges when
the infrared cutoff is formally removed.

Example 3.3.6 Localization of the particle

As the final example we show exponential decay of the Lebesgue-density of the
stationary measure of N . We will need the following property of H:

Proposition 3.3.7 (Diamagnetic inequality) For f, g ∈ L2(P0) we have〈
f, e−tHg

〉
L2(P0)

≤ etVeff

〈
‖f‖L2(G) , e

−tH̃p ‖g‖L2(G)

〉
L2(N0)

,

where

Veff =
1

2

∫
|%̂(k)|2

ω2(k)
dk = 2 ‖|B|%‖2

K <∞,

and H̃p = (1/ψ0)Hpψ0.

A proof can be found in [23].
The second ingredient we need is essentially the result due to Carmona [10] that

we already used in Chapter 2. Recall that the Carmona class of potentials was
defined in 2.2.9. From the proofs of Lemma 3.1 and Propositions 3.1 and 3.2 of [10]
one can extract the following
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Lemma 3.3.8 Let V = V1−V2 be of the Carmona class, and use W q̄ to denote the
measure of Brownian motion on Rd starting in q̄.

a) Suppose there exist γ > 0,m > 0 such that

V1(q) ≥ γ |q|2m

outside a compact set. Put t(q) = max{|q|1−m , 1}. Then for each E > 0 there
exist D > 0 and δ > 0 such that

∀q̄ ∈ Rd : et(q̄)E
∫
e−

R t(q̄)
0 V (qs) ds dW q̄(q) ≤ D exp(−δ |q̄|m+1).

b) Put α := lim inf |q|→∞ V (q), t(q) := β |q| with β > 0. Then for each E ∈ R
with E < α, there exist D > 0, δ > 0 and β > 0 such that

∀q̄ ∈ Rd : et(q̄)E
∫
e−

R t(q̄)
0 V (qs) ds dW q̄(q) ≤ D exp(−δ |q̄|).

Recall that N denotes the stationary measure of N , ψ0λ equals the square root of
the Lebesgue density of N (cf. Example 3.3.2) and E0 is the ground state energy of
H. Our result now reads:

Theorem 3.3.9 For any V fulfilling (V1) and (V2) from 2.2.1, we have ψ0λ ∈
L∞(Rd). If, in addition, V = V1 − V2 is of the Carmona class, then there exists a
version of ψ0λ (denoted by q 7→ ψ0(q)λ(q)) for which the following statements hold:

a) If V satisfies the assumptions of Proposition 3.3.8 a), then there exist D, δ > 0
with

∀q ∈ Rd : ψ0(q)λ(q) ≤ D exp(−δ |q|m+1). (3.28)

b) Put α := lim inf |q|→∞ V1(q). If α−(E0+Veff) > 0, then there exist D > 0, δ > 0
such that

∀q ∈ Rd : ψ0(q)λ(q) ≤ D exp(−δ |q|). (3.29)

Proof: We first show that ψ0λ ∈ L∞(Rd). Since HΨ = E0Ψ, for h ∈ L∞(Rd), h ≥ 0,
the diamagnetic inequality implies∫

h(q)ψ2
0(q)λ

2(q) dq = 〈hΨ,Ψ〉L2(P0) = etE0
〈
hΨ, e−tHΨ

〉
L2(P0)

≤ et(Veff+E0)
〈
hλ, e−tH̃pλ

〉
L2(N0)

(3.30)

= et(Veff+E0)

∫
h(q)ψ0(q)λ(q)(e−tHpλψ0)(q) dq.
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Since we required V to be in the Kato class, e−tHp takes L2(dq) into L∞(dq) [46].
Thus we can find C ∈ R with∫

h(q)ψ2
0(q)λ

2(q) dq ≤ C

∫
h(q)ψ(q)λ(q) dq, (3.31)

which implies ψ0λ ∈ L∞. Using this result in (3.30) and the Feynman-Kac formula
to express the kernel of e−tHp , we get∫

h(q)ψ2
0(q)λ

2(q) dq ≤

≤ et(Veff+E0)

∫
dq̄ h(q̄)ψ0(q̄)λ(q̄)

∫
e−

R t
0 V (qs) dsψ0(qt)λ(qt) dW q̄(q)

≤ et(Veff+E0) ‖ψ0λ‖2
L∞

∫
dq̄ h(q̄)

∫
e−

R t
0 V (qs) ds dW q̄(q). (3.32)

The version of ψ0λ mentioned above can now be explicitly defined by

ψ2
0(q)λ

2(q) = lim sup
n→∞

∫
hq,n(x)ψ

2
0(x)λ

2(x) dx,

where hq,n is any fixed sequence of L1-functions converging in L1 to a delta peak at

q. We now use this sequence in (3.32). Since
∫

exp(−
∫ t

0
V (qs) ds) dW q̄ is continuous

in q̄ and finite for all q̄, the right hand side of (3.32) converges and we have

ψ2
0(q̄)λ

2(q̄) ≤ et(Veff+E0) ‖ψ0λ‖2
L∞

∫
e−

R t
0 V (qs) ds dW q̄(q).

This inequality is valid for each t > 0, and therefore in case V is in the Carmona
class, we can use Proposition 3.3.8 with E replaced by Veff + E0 to conclude the
proof. �

A version of the preceding result already appears in [6]. There it is shown that
ψ0(q)λ(q) exp(αq) ∈ L1(dq) for some α > 0, while the present results (when appli-
cable) imply ψ0(q)λ(q) exp(αq) ∈ L∞(dq) in case of a decaying external potential V
and superexponential localization in case of growing potentials.
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A.1 Fock space over CN

In this appendix it is shown how the symmetric Fock space over CN arises in a natural
way as a method for decomposing L2(RN), N < ∞ into orthogonal subspaces. For

each l ∈ {1, . . . , N} we choose an orthonormal basis (f
(l)
n )n≥0 of L2(R). Then the

subspace of L2(RN) spanned by functions of the form

(x1, . . . , xn) 7→ f (1)
n1

(x1) · · · f (N)
nN

(xN)

is dense in L2(RN). Put

LM = {(x1, . . . , xN) 7→ f (1)
n1

(x1) · · · f (N)
nN

(xN) :
N∑
i=1

ni = M}.

The orthogonality of the fj implies that F ∈ LM and G ∈ LM ′ are orthogonal if
M 6= M ′, and F,G ∈ LM with F (x1, . . . , xn) = fn1(x1) · · · fnN

(xn), G(x1, . . . , xn) =
fm1(x1) · · · fmN

(xn) are orthogonal if (n1, . . . , nN) 6= (m1, . . . ,mN). Thus we can
decompose L2(RN) into the orthogonal subspaces spanned by the LM , and the di-
mension of each LM is equal to the number of integer-valued, N -dimensional vectors
with

∑N
i=1 ni = M . The symmetric Fock space is a way of counting the number of

such vectors.
The idea is that each integer-valued vector ~n = (n1, . . . nN) with

∑N
i=1 ni = M

can be represented as a sum of M standard basis vectors of CN , i.e. ~n =
∑M

i=1 ~ekj
,

kj ∈ {1, . . . , N}. The M -tuple of eigenvectors in turn can be viewed as a function
φ : {1, . . . , N}M → R with is equal to one at exactly one point (k1, . . . , kM) ∈
{1, . . . N}M and zero otherwise. Of course, this is nothing but the tensor product
~ek1 ⊗ . . .⊗ ~ekM

. However, this representation is not unique, since each permutation
of the ~ei, equivalently each permutation of the variables in φ, leads to the same
~n. This is where the symmetry condition enters: we declare two function φ1, φ2 :
{1, . . . , N}M → R of the above given form to be equivalent if φ1 arises from φ2

by a permutation of variables, i.e. if there exists a permutation π on {1, . . . ,M}
such that φ(k1, . . . , kM) = φ(kπ(1), . . . , kπ(M)) for all k1, . . . , kM ∈ {1, . . . , N}. In
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the language of tensor products, an equivalent procedure is to take the symmetric
tensor product

~ek1⊗̂ · · · ⊗̂~ekM
=

1

|Π(M)|
∑

π∈Π(M)

~ekπ(1)
⊗ . . .⊗ ~ekπ(M)

,

where Π(M) is the set of permutations on {1, . . . ,M}. A moment of thought reveals
that both procedures result in a one-to-one correspondence of the resulting objects
(equivalence classes or symmetric tensors) with the elements of LM . Now we take
linear combinations to find

span(LM) ∼= span{φ : {1, . . . , N}M → C, φ symmetric } ∼=
∼= span{~v1⊗̂ . . . ⊗̂~vM : ~v ∈ CN} ≡ F (M)

N . (A.1)

F (M)
N is the M -th Fock space segment of the symmetric Fock space over CN . Since

the LM are orthogonal and span L2(RN) we have

L2(RN) ∼=
∞⊕

M=0

F (M)
N ≡ FN .

FN is the symmetric Fock space over CN .
To make the connection (at least formally) with the Fock space introduced in

Section 1.3, let us take a finite box Λ ⊂ Rd and divide it into N pieces Λ1, . . . ,ΛN .
We use the numbers 1, . . . , N from (A.1) to label these pieces, which means that
each symmetric function φ : {1, . . . , N}M → C is regarded as a symmetric function
fN : (Rd)M → C that is constant on each of the Λj and zero outside Λ. Now by
taking the limit |Λ| → ∞ and N → ∞ in such a way that Λj → 0 for each j, and
by imposing some summability conditions on the functions fN as N → ∞, it is at
least formally plausible that the limiting object F (M) = F (M)

∞ will be the space of all
symmetric, e.g. square integrable functions f : (Rd)M → C. This leads to Definition
1.3.1.

A.2 Stochastic processes from Schrödinger

operators

Here we give some basics on P (φ)1-processes [45, 46]. These processes are con-
nected to Schrödinger operators via the Feynman-Kac formula and the ground state
transformation. We consider a Schrödinger operator H = −1

2
∆ + V in L2(Rd).

V : Rd → R is a measurable function which acts as an operator of multiplication.
We first give the conditions we impose on V .
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Definition A.2.1 A measurable function V : Rd → R is said to be in the Kato
class [46], V ∈ K(Rd), if

sup
x∈R

∫
{|x−y|≤1}

|V (y)| dy <∞ in case d = 1,

and

lim
r→0

sup
x∈Rd

∫
{|x−y|≤r}

g(x− y)|V (y)| dy = 0 in case d ≥ 2.

Here,

g(x) =

{
− ln |x| if d = 2
|x|2−d if d ≥ 3.

V is locally in the Kato class, V ∈ Kloc(Rd), if V 1K ∈ K(Rd) for each compact set
K ⊂ Rd. V is Kato decomposable [9] if

V = V + − V − with V − ∈ K(Rd), V + ∈ Kloc(Rd),

where V + is the positive part and V − is the negative part of V .

In the context of Brownian motion, the Kato class turns out to be a very natural
class of functions. Namely, a function V is in the Kato class if and only if [1]

sup
y∈Rd

∫ (∫ t

0

|V (xs)| ds
)
dWy(x)

t→0−→ 0.

Here, Wy is Brownian motion starting in y ∈ Rd.
In the following, we will always assume that V is Kato-decomposable. In that

case, H is self-adjoint on D(H0) and bounded from below, and for each t > 0 the
operator e−tH has an integral kernel given via the Feynman-Kac formula:

(
e−tHf

)
(y) =

∫
e−

R t
0 V (xs) dsf(xt) dWy(x). (A.2)

As the case V = 0 shows, H need not have eigenvalues. However, we are only
interested in such H that do have eigenvalues, more precisely in those for which the
infimum of the spectrum is an eigenvalue. If this eigenvalue exists, it is necessarily
of multiplicity one, and the corresponding eigenfunction (called ground state) can
be chosen to be strictly positive; this follows from a Perron-Frobenius argument,
since by (A.2) e−tH has a strictly positive kernel. A sufficient condition on V for the
existence of a ground state is lim inf |x|→∞ V (x) = ∞, but ground states exist also
for many other choices of V , like e.g. the Coulomb potential in three dimensions.
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Let us summarize our assumptions on V :

(A1) : V is Kato-decomposable.

(A2) : H has a ground state ψ0 ∈ L2(Rd). We take ‖ψ0‖L2(Rd) = 1.

(A3) : inf spec(H) = 0.

(A3) is there only for convenience and can always be achieved by adding a constant
to V .

We now use the ground state transformation to convert H into the generator of
a stochastic process. The ground state transformation is the unitary map

L2(ψ2
0 dx) → L2(Rd), f 7→ ψ0f.

we will use ψ0 to denote this transformation, and 1/ψ0 for the inverse. Using Hψ0 =
0, we obtain for the operator L = 1

ψ0
Hψ0 the formula

(Lf)(x) = −1

2
∆f(x)−

〈
∇ψ0

ψ0

(x),∇f(x)

〉
Rd

for all f ∈ L2(ψ2
0 dx) which are in the domain of L. L is the generator of a stochastic

process satisfying the stochastic differential equation

dXt =
∇ψ0

ψ0

(Xt) dt+ dBt. (A.3)

The stationary solution of (A.3) will be called P (φ)1-process. It is a strong Markov
process. The path measure of this process will be denoted by µ, and the transition
probabilities are given by

Eµ(f(Xt)|X0 = y) = (e−tLf)(y) =
1

ψ0(y)
(e−tH(ψ0f))(y) = (A.4)

=
1

ψ0(y)

∫
e−

R t
0 V (xs) dsψ0(xt)f(xt) dWy(x).

Since the stationary measure of µ is ψ2
0 dx, according to the Feynman-Kac formula

the finite dimensional distributions of µ are given by∫
f1(Xt1) · · · fn(Xtn) dµ(X) =

〈
ψ0f1, e

−(t2−t1)Hf2 . . . e
−(tn−tn−1)Hfnψ0

〉
L2(Rd)

=

=
〈
f1, e

−(t2−t1)Lf2 . . . e
−(tn−tn−1)Lfn

〉
L2(ψ2

0 dx)
(A.5)

for t1 < t2 < . . . < tn.
We also use this appendix to collect some analytic properties of the semigroup

e−tH that will be needed in the course of this work. The reference for all of them is
[46].
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(S1): For each 1 ≤ p ≤ q ≤ ∞ and each t > 0, e−tH is a bounded operator from
Lp(Rd) to Lq(Rd).

(S2): For each t > 0, the integral kernel Kt(ξ, η) of e−tH is uniformly bounded on
R2d and bounded away from zero on compact subsets of R2d. The same is true
for the ground state ψ0 on Rd.

(S3): For each t > 0, η 7→ Kt(ξ, η) is Lebesgue-integrable uniformly in ξ ∈ Rd.

A.3 The finite dimensional Ornstein-Uhlenbeck

process

We now apply the results from Appendix A.2 to obtain the N -dimensional Ornstein-
Uhlenbeck process appearing in Section 1.2. In this case, all of the above objects
are given by explicit formulas, which we state without further comments. The (non-
renormalized) Schrödinger operator HOU,nr is given by

(HOU,nrf)(x) = −1

2
∆f(x) +

1

2
〈x,Ax〉RN f(x),

where A is a symmetric matrix with strictly positive eigenvalues. The (normalized)
ground state is

ψOU =

(
det

√
A

(2π)N

)1/2

exp

(
−1

2

〈
x,
√
Ax
〉

RN

)
.

The renormalized Schrödinger operator, i.e. the one with inf specH = 0, is

HOU = −1

2
∆ +

1

2
〈x,Ax〉RN −

1

2
tr
√
A.

The stochastic generator LOU is given by

(LOUf)(x) = −1

2
∆f(x) +

〈√
Ax,∇f(x)

〉
RN
,

and the stochastic differential equation is

dXt = −
√
AXt dt+ dBt. (A.6)

It can be checked with the help of Itô’s formula that the solution of (A.6) with initial
condition X0 = y is given by

Xt = e−t
√
Ay +

∫ t

0

e−|t−s|
√
A dBs. (A.7)
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As a stochastic integral with deterministic integrand, Xt is a Gaussian process, and
thus is characterized by its mean value

E(Xt) = e−t
√
Ay

and (matrix-valued) covariance function

C(t, s) = (E((Xs)i(Xt)j)− E(Xs)iE(Xt)j)1≤i,j≤N =
1

2

√
A
−1
(
e−|t−s|

√
A − e−(t+s)

√
A
)

for t, s ≥ 0. The covariance of the stationary solution of (A.6) is obtained by sending
t, s→∞ and keeping t− s fixed, with the result

Cstat(t, s) =
1

2

√
A
−1
e−|t−s|

√
A.

The mean value of the stationary process is 0.
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[5] V. Betz, J. Lőrinczi: A Gibbsian description of P (φ)1-processes. mp-arc 99-223,
submitted for publication (2000).
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[24] M. Hübner, H. Spohn: Radiative decay: nonperturbative approaches. Rev.
Math. Phys. 7, 363-387 (1995).

[25] Iwata, K, 1987. Reversible measures of a P (φ)1 time evolution, in Probabilistic
Methods in Mathematical Physics, Proc. Taniguchi Symp., Katata-Kyoto, 1985,
Academic Press, pp. 195-209.

[26] O. Kallenberg: Foundations of Modern Probability, New York, Berlin, Heidel-
berg: Springer 1997.



BIBLIOGRAPHY 85

[27] C. Kipnis, S.R.S. Varadhan: Central limit theorem for additive functionals of
reversible Markov processes and applications to simple exclusions. Commun.
Math. Phys. 104, 1-19 (1986).

[28] J.L. Lebowitz, E. Presutti: Statistical mechanics of systems of unbounded spins.
Commun. Math. Phys. 50, 195-218 (1976).
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[31] J. Lőrinczi, R. A. Minlos, H. Spohn: Infrared regular representation of the three
dimensional massless Nelson model. Submitted for publication (2001).

[32] E. Nelson: Schrödinger particles interacting with a quantized scalar field, Pro-
ceedings of a conference on analysis in function space, Ed. W. T. Martin, I.
Segal, MIT Press, Cambridge 1964, p. 87.

[33] E. Nelson: Interaction of nonrelativistic particles with a quantized scalar field,
J. Math. Phys. 5, 1990-1997 (1964).

[34] E. Nelson: Probability theory and euclidean quantum field theory. In: Con-
structive Quantum field theory, ed. G. Velo and A. Wightman. Berlin, Heidel-
berg, New York: Springer, 1973.

[35] E. Nelson: The free Markoff field, Journ. Funct. Anal. 12, 211-227 (1973).

[36] E. Nelson: Construction of quantum fields from Markoff fields, Journ. Funct.
Anal. 12, 97-112 (1973).

[37] N. Obata: White noise calculus and Fock space. Berlin, Heidelberg: Springer,
1994.

[38] H. Osada, H. Spohn: Gibbs measures relative to Brownian motion. Ann.
Probab. 27, 1183-1207 (1999).

[39] J. Rosen, B. Simon: Fluctuations in P (φ)1 processes. Ann. Probab. 4, No 2,
155-174 (1976).

[40] M. Reed, B. Simon: Methods of Modern Mathematical Physics, 1. Functional
analysis. London: Academic Press, 1980.



86 BIBLIOGRAPHY

[41] M. Reed, B. Simon: Methods of Modern Mathematical Physics, 2. Fourier
Analysis, Self-Adjointness. London: Academic Press, 1975.

[42] M. Reed, B. Simon: Methods of Modern Mathematical Physics, 4. Analysis of
Operators. London: Academic Press, 1978.

[43] D. Ruelle: Superstable interactions in classical statistical mechanics. Commun.
Math. Phys 18, 127-159 (1970).

[44] B. Simon: The P (φ)2 Euclidean (quantum) field theory. Princeton, New York:
Princetom Univ. Press (1974).

[45] B. Simon: Functional Integration and Quantum Physics. New York, San Fran-
cisco, London: Academic Press, 1979.

[46] B. Simon: Schrödinger semigroups. Bull. AMS 7, 447-526 (1982).

[47] H. Spohn: Effective mass of the polaron: a functional integral approach. Ann.
Phys. 175 No. 2, 278-318 (1987).

[48] H. Spohn: Ground state of a quantum particle coupled to a scalar boson field.
Lett. Math. Phys. 44, 9-16 (1998).



Index

P (φ)1-process, 84

annihilation operator, 7

bosons, 6
number at given momentum, 75
number at given position, 76
number distribution, 73

boundary condition, 40

canonical quantization, 2
Carmona class, 50
creation operator, 7

diamagnetic inequality, 77
differential second quantization, 7, 9
DLR equations, 39

Feynman-Kac formula, 83
Feynman-Kac-Nelson formula, 27
Fock space, 6

over CN , 81

Gaussian measure, 12
covariance, 13
existence, 12
mean, 13

Gibbs measure, 38
non-unique, 46

ground state transformation, 24, 84

infinitesimal potential, 35
infrared condition, 64
infrared cutoff, 30
infrared divergence, 30
interaction energy

between field and particle, 11
between left and right half-line, 53

Kato class, 83
Kato decomposable, 83
Kato-Rellich theorem, 12

local convergence, 41

Mehler’s formula, 46
moment generating function, 71

Nelson model
massive, 64
massless, 64

Nelson’s model
Hamiltonian in Fock space, 11

number operator, 7

Ornstein-Uhlenbeck process
one-dimensional, 46
finite dimensional, 85
infinite dimensional, 17

Markov property, 18
stationary distribution, 17
generator, 25
path continuity, 19
transition semigroup, 26

particle localization, 77
potential

pair, 37
singles site, 37

reference measure, 35

scalar field

87



88 INDEX

classical, 1
quantized, 11

expected value, 74
fluctuations, 74

Schrödinger operator, 82
second quantization, 9
spectral gap, 43, 64
spin system, 1-dimensional, 33
symmetric tensor product, 9

ultraviolet cutoff, 30
ultraviolet divergence, 30

Wick exponential, 25
Wick polynomial, 21
Wiener measure, 35

conditional, 36
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