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Abstract. We consider systems of spatial random permutations, where permu-
tations are weighed according to the point locations. Infinite cycles are present at
high densities. The critical density is given by an exact expression. We discuss the
relation between the model of spatial permutations and the ideal and interacting
quantum Bose gas.

Keywords: Spatial random permutations, infinite cycles, Bose-Einstein condensation.

2000 Math. Subj. Class.: 60K35, 82B20, 82B26, 82B41.

Contents

1. Introduction 1
2. The model in finite volume 4
3. The model in infinite volume 6
3.1. The σ-algebra 6
3.2. An extension theorem 7
3.3. Permutation cycles and probability measure 9
3.4. Finite vs infinite volume 10
4. A regime without infinite cycles 10
5. The one-body model 11
5.1. Occurrence of infinite cycles 11
5.2. Fourier representation for spatial permutations 13
6. The quantum Bose gas 17
6.1. Feynman-Kac representation of the Bose gas 17
6.2. Discussion: Relevant interactions for spatial permutations 19
7. A simple model of spatial random permutations with interactions 20
7.1. Approximation and definition of the model 20
7.2. Pressure and critical density 21
7.3. Occurrence of infinite cycles 22
Appendix A. Macroscopic occupation of the zero Fourier mode. 26
Appendix B. Convexity and Fourier positivity 29
References 30

1. Introduction

This article is devoted to random permutations on countable sets that possess a spatial
structure. Let x be a finite set of points x1, . . . , xN ∈ Rd, and let SN be the set of
permutations of N elements. We are interested in probability measures on SN where
permutations with long jumps are discouraged. The main example deals with “Gaussian”
weights, where the probability of π ∈ SN is proportional to

exp
{
− 1

4β

N∑
i=1

|xi − xπ(i)|2
}
,
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with β a parameter. But we are also interested in more general weights on permutations.
In addition, we want to allow the distribution of points to be random and to depend on
the permutations.

We are mostly interested in the existence and properties of such measures in the ther-
modynamic limit. That is, assuming that the N points x belong to a cubic box Λ ⊂ Rd,
we consider the limit |Λ|, N →∞, keeping the density ρ = N/|Λ| fixed. The main question
is the possible occurrence of infinite cycles. As will be seen, infinite cycles occur when the
density is larger than than a critical value.

Mathematicians and physicists have devoted many efforts to investigating properties
of non-spatial random permutations, when all permutations carry equal weight. In par-
ticular, a special emphasis has been put on the study of longest increasing subsequences
[1, 3] and their implications for such diverse areas as random matrices [3, 20], Gromov-
Witten theory [21] or polynuclear growth [7], and spectacular results have been obtained.
The situation is very different for random permutations involving spatial structure; we
are only aware of the works [15, 16, 9] (and [10]). This lack of attention is odd since
spatial random permutations are natural and appealing notions in probability theory; it
becomes even more astonishing when considering that they play an important rôle in the
study of quantum bosonic systems: Feynman [8] and Penrose and Onsager [22] pointed
out the importance of long cycles for Bose-Einstein condensation, and later Sütő clarified
the notion of infinite cycles, also showing that infinite, macroscopic cycles are present in
the ideal Bose gas [24, 25]. These works, however, never leave the context of quantum
mechanics. We believe that the time is ripe for introducing a general mathematical frame-
work of spatial random permutations. The goal of this article is to clarify the setting and
the open questions, and also to present some results.

In Section 2, we introduce a model for spatial random permutations in a bounded
domain Λ ⊂ Rd. As stated above, the intuition is to suppress permutations with large
jumps. We achieve this by assigning a “one-body energy” of the form

∑
i ξ(xi − xπ(i))

to a given permutation π on a finite set x. The one-body potential ξ is nonnegative and
typically monotonically increasing, although we will allow more general cases. In addition,
we will introduce “many-body potentials” depending on several jumps, as well as a weight
for the points x.

As usual, the most interesting mathematical structures will emerge in the thermody-
namic limit |Λ|, N →∞, where N is the number of points in x. The ambitious approach
is to consider and study the infinite volume limit of probability measures. The limiting
measure should be a well-defined joint probability measure on countably infinite (but lo-
cally finite) sets x ⊂ Rd, and on permutations of x. To establish such a limit seems fairly
difficult; as an alternative one can settle for constructing an infinite volume measure for
permutations only, with a fixed x chosen according to some point process. We provide
a framework for doing so in Section 3, and give a natural criterion for the existence of
the infinite volume limit (it is a generalisation of the one given in [10]). This criterion is
trivially fulfilled if the interaction prohibits jumps greater than a certain finite distance;
however, its verification for the physically most interesting cases remains an open problem.

Another option for taking the thermodynamic limit is to focus on the existence of the
limiting distribution of one special random variable as |Λ|, N → ∞. Motivated by its
relevance to Bose-Einstein condensation, our choice of random variable is the probability
of the existence of long cycles; more precisely, we will study the fraction of indices that
lie in a cycle of macroscopic length. The general intuition is that in situations where
points are sparse (low density), or where moderately long jumps are strongly discouraged
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(high temperature), the typical permutation is a small perturbation of the identity map,
and there are no infinite cycles. In Section 4 we give a criterion (that corresponds to low
densities, resp. high temperatures) for the absence of infinite cycles.

On the other hand, infinite cycles are usually present for high density. The density
where existence of infinite cycles first occurs is called the critical density. We establish the
occurrence of infinite, macroscopic cycles in Section 5 for the case where only the one-body
potential is present, and where we average over the point configurations x in a suitable
way. An especially pleasing aspect of the result is the existence of a simple, exact formula
for the critical density. It turns out to be nothing else than the critical density of the ideal
Bose gas, first computed by Einstein in 1925! The experienced physicist may shrug this
fact off in hindsight. However, it is a priori not apparent why quantum mechanics should
be useful in understanding this problem, and it is fortunate that much progress has been
achieved on bosonic systems over the years. Of direct relevance here is Sütő’s study of the
ideal gas [25], and the work of Buffet and Pulè on distributions of occupation numbers [5].

Section 6 is devoted to the relation between models of spatial random permutations
and the Feynman-Kac representation of the Bose gas. We are particularly interested in
the effect of interactions on the Bose-Einstein condensation. While this question has been
largely left to numericians, experts in path-integral Monte-Carlo methods, we expect that
weakly interacting bosons can be exactly described by a model of spatial permutations with
two-body interactions. An interesting open problem is to establish this fact rigorously.
Numerical simulations of the model of spatial permutations should be rather easy to
perform, and they should help us to understand the phase transition to a Bose condensate.

In Section 7 we simplify the interacting model of Section 6. It turns out that the largest
terms contributing to the interactions between permutation jumps are due to cycles of
length 2. Retaining this contribution only, we obtain a toy model of interacting random
permutations that is simple enough to handle, but which allows to explore some of the
effects of interactions on Bose-Einstein condensation. In particular, we are able to compute
the critical temperature exactly. It turns out to be higher than the non-interacting one
and to deviate linearly in the scattering length of the interaction potential. This is in
qualitative agreement with the findings of the physical community [2, 13, 14, 19]. In
addition, we show that infinite cycles occur in our toy model whenever the density is
sufficiently high However, our condition on the density is not optimal: — higher than the
critical density of our interacting model. Our condition is not optimal. We expect the
existence of infinite cycles right down to the interacting critical density, but this is yet
another open problem.

Acknowledgments. We are grateful to many colleagues for discussions over a rather long
period of time. In particular, we would like to mention Stefan Adams, Michael Aizenman,
Marek Biskup, Jürg Fröhlich, Daniel Gandolfo, Gian Michele Graf, Martin Hairer, Roman
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V.B. is supported by the EPSRC fellowship EP/D07181X/1. D.U. is supported in part
by the grant DMS-0601075 of the US National Science Foundation.
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2. The model in finite volume

Let Λ be a bounded open domain in Rd, and let V denote its volume (Lebesgue measure).
The state space of our model is the cartesian product

ΩΛ,N = ΛN × SN , (2.1)

where SN is the symmetric group of permutations of {1,. . . ,N}. The state space ΩΛ,N can
be equipped with the product σ-algebra of the Borel σ-algebra for ΛN , and the discrete
σ-algebra for SN . An element (x1, . . . , xN ) × π ∈ ΩΛ,N is viewed as a spatial random
permutation in the sense that xj is mapped to xπ(j) for all j. Figure 1 illustrates this.
The probability measure on ΩΛ,N is obtained in the usual way of statistical mechanics:

Figure 1. Illustration for a random set of points x, and for a permutation
π on x. Isolated points are sent onto themselves.

a reference measure, in our case the product of Lebesgue measure on ΛN and uniform
measure on permutations, is perturbed by a density given by the exponential of a Hamil-
tonian, i.e. a function H : ΩΛ,N → (−∞,∞]. We will shortly specify the shape of relevant
Hamiltonians.

We are interested in properties of permutations rather than positions, and we only
consider random variables on SN . We consider two different expectations: Ex, when
positions x ∈ ΛN are fixed; and EΛ,N , when we average over positions. For this purpose
we introduce the partition functions

Y (x) =
∑
π∈SN

e−H(x,π) ,

Z(Λ, N) =
1
N !

∫
ΛN

Y (x) dx.

(2.2)

In the last line, dx denotes the Lebesgue measure on RdN . The factor 1/N ! implies
that Z(Λ, N) ∼ eV q for large V,N , and for “reasonable” Hamiltonians — a desirable
property in statistical mechanics. Then, for θ : SN → R a random variable on the set of
permutations, we define

Ex(θ) =
1

Y (x)

∑
π∈SN

θ(π) e−H(x,π) , (2.3)
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and

EΛ,N (θ) =
1

Z(Λ, N)N !

∫
ΛN

dx
∑
π∈SN

θ(π) e−H(x,π)

=
1

Z(Λ, N)N !

∫
ΛN

Ex(θ)Y (x)dx.

(2.4)

We will be mostly interested in the possible occurrence of long cycles. Thus we introduce
a random variable that measures the density of points in cycles of length between m and
n:

%m,n(π) = 1
V #

{
i = 1, . . . , N : m 6 `i(π) 6 n

}
. (2.5)

Here, `i(π) denotes the length of the cycle that contains i; that is, `i(π) is the smallest
number n > 1 such that π(n)(i) = i. We also have

%m,n(π) =
1
V

N∑
i=1

χ
[m,n]

(
`i(π)

)
(2.6)

with χI denoting the characteristic function for the interval I.
We denote by RN the space of random variables on SN that are invariant under trans-

positions. That is, θ ∈ RN satisfies

θ(σ−1πσ) = θ(π) (2.7)

for any σ, π ∈ SN . Random variables in RN have the useful property that they do not
depend on the way the set x = {x1, . . . , xN} is labeled. Instead, they only depend on
the set x itself, and in that sense are the most natural quantities to study. Notice that
%m,n ∈ RN .

We now discuss the form of relevant Hamiltonians. H is given by the sum

H(x, π) = H(1)(x, π) +
∑
k > 2

H(k)(x, π) +G(x), (2.8)

where the terms satisfy the following properties. Let x = (x1, . . . , xN ).
• The one-body Hamiltonian H(1) has the form

H(1)(x, π) =
N∑
i=1

ξ(xi − xπ(i)). (2.9)

We suppose that ξ is a spherically symmetric function Rd → [0,∞], that ξ(0) = 0,
and that e−ξ is integrable.
• The k-body term H(k) : ΩΛ,N → R can be negative; is has the form

H(k)(x, π) =
∑

A⊂{1,...,N}
|A|=k

V
(
(xj , xπ(j))j∈A

)
. (2.10)

• The function G : RdN → R depends on the points only. It has no effect on the
expectation Ex, but it modifies the expectation EΛ,N .

We will discuss in Section 6 the links between spatial random permutations and the
quantum Bose gas. We will see that the physically relevant terms are ξ(x) = |x|2/4β,
that the interactions are two-body (H(k) = 0 for k > 2), and that G(x) ≡ 0. From
the mathematical point of view it is interesting to consider a more general setting. In
particular, we can restrict the jumps by setting ξ(x) =∞ for |x| bigger than some cutoff
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distance R. The effect of G is to modify the typical sets of points. We can choose it such
that Y (x) ≡ 1. We refer to this case as “Poisson”, since positions are independent of each
other, and they are uniformly spread. The point process for the Bose gas is not Poisson,
however. The fluctuations of the number of points in a subdomain was studied in [17].
They were shown to satisfy a large deviation principle with a rate function that is different
than Poisson’s.

3. The model in infinite volume

As usual, the most interesting structures emerge in the infinite volume limit V → ∞
or, more precisely, the thermodynamic limit V → ∞, N = ρV . The easiest way to take
this limit is to consider a fixed random variable, e.g. %a,b(π) from (2.5), and study its
distribution as V →∞ and N = ρV . We will indeed do this in Section 5; an advantage of
this approach is that we do not have to worry about infinite volume probability measures.
But these infinite volume measures are very interesting objects to study directly, in the
same spirit as when constructing infinite volume Gibbs measures. We advocate this point
of view in the present section, and introduce a framework for spatial permutations in
unbounded domains.

3.1. The σ-algebra. The present and the following subsection contain preparatory re-
sults about permutations on N. We introduce the “cylinder sets” Bi,j that consist of all
permutations where i ∈ N is sent to j ∈ N:

Bi,j = {π ∈ SN : π(i) = j}. (3.1)

Let Σ′ denote the collection of finite intersections of cylinder sets and their complements.
One can check that it is closed under finite intersections, and also that the difference of
two sets is equal to a finite union of disjoint sets. Such a set is called a semiring by
probabilists. Semirings are useful because they are easy to build from basic sets, and
because premeasures on semirings can be extended to measures by the Carathéodory-
Fréchet theorem. Let Σ be the σ-algebra generated by the Bi,j .

We start by proving a structural lemma that we shall use when extending finite volume
measures to an infinite volume one. For A1, A

′
1, . . . , Am, A

′
m ⊂ N, let us define

BA1...Am
A′1...A

′
m

=
{
π ∈ SN : π−1(i) ∈ Ai and π(i) ∈ A′i, 1 6 i 6 m

}
. (3.2)

One easily checks that any element of the semiring can be represented by a set of the form
(3.2). Also, the intersection of two such sets satisfies

BA1...Am
A′1...A

′
m
∩BC1...Cm

C′1...C
′
m

= BA1∩C1...Am∩Cm
A′1∩C′1...A′m∩C′m

. (3.3)

Lemma 3.1. Let A1, A
′
1, A2, A

′
2, . . . be finite subsets of N. If

BA1...Am
A′1...A

′
m
6= ∅

for any finite m, then limm→∞B
A1...Am
A′1...A

′
m
6= ∅.

It is crucial that both Ai and A′i be finite for all i; counter-examples are easily found
otherwise. For instance, choose A1 = N, Ai = {i− 1} for i > 1, and A′i = {i+ 1} for all i;
then each finite intersection is non-empty. The infinite intersection is empty, on the other
hand, since there is no possibility left for the preimage of 1. Similarly, choosing A′1 = N,
A′i = {i− 1} for i > 1 and Ai = {i+ 1} does not leave a possible image for 1. These two
cases should be kept in mind when reading the proof.
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A claim similar to Lemma 3.1 and Theorem 3.2 was proposed in [10]. The proof there
contains a little flaw that is corrected here.

Proof. We write Ba
a′ instead of B{a}{a′}, etc... We have

BA1...Am
A′1...A

′
m

= ∪
a1,...,am
a′1,...,a

′
m

Ba1...am
a′1...a

′
m
. (3.4)

The union is over a1 ∈ A1, . . . , a
′
m ∈ A′m, with the restriction that ai 6= aj and a′i 6= a′j for

i 6= j. The union is disjoint, Ba1...am
a′1...a

′
m
6= ∅, and

B
a1...am+1

a′1...a
′
m+1
⊂ Ba1...am

a′1...a
′
m
. (3.5)

Permutations are charaterised by a “limiting set”, namely

{π} = Ba1a2...
a′1a
′
2...

(3.6)

where {ai}, {a′i} are given by

π−1(i) = ai and π(i) = a′i. (3.7)

Conversely, given {ai}, {a′i}, B
a1a2...
a′1a
′
2...

is either empty, or it contains the permutation π that
satisfies (3.7). We now check that the decomposition (3.4) yields at least one non-empty
limiting set.

The sets Ba1...am
a′1...a

′
m

that appear in (3.4) can be organised as a tree. The root is SN. The
sets with m = 1 are connected to SN, i.e. all the sets Ba1

a′1
, a1 ∈ A1 and a′1 ∈ A′1. The

sets with m = 2 are connected to those with m = 1. Precisely, the sets Ba1a2

a′1a
′
2
, a2 ∈ A2

and a′2 ∈ A′2, are connected to Ba1

a′1
. And so on... There are infinitely many vertices, but

finitely many vertices at finite distance from the root.
We can select a limiting set as follows. Let `a1...am

a′1...a
′
m

denote the length of the longest
path descending from Ba1...am

a′1...a
′
m

. For each m, there is at least one {ai}, {a′i} such that
`a1...am
a′1...a

′
m

= ∞. (Otherwise the tree cannot have infinitely many vertices, since the sets
A1, A

′
1, . . . have finite cardinality.) Further, there exists am+1 ∈ Am+1 and a′m+1 ∈ A′m+1

such that `a1...am+1

a′1...a
′
m+1

= ∞. We can choose an infinite descending path such that `a1...am
a′1...a

′
m

is

always infinite. The sets Ba1...am
a′1...a

′
m

are not empty for any m, so that Ba1a2...
a′1a
′
2...

is a non-empty
limiting set. �

3.2. An extension theorem. We now give a criterion for a set function µ on Σ′ to
extend to a measure on Σ.

Theorem 3.2. Let Σ′ be the semiring generated by the cylinder sets Bi,j in (3.1), and let
µ be an additive set function on Σ′ with µ(SN) <∞. We assume that for any i ∈ N, and
any ε > 0, there exists a finite set A ⊂ N (that depends on i and ε) such that∑

j∈A
µ(Bi,j) > 1− ε, and

∑
j∈A

µ(Bj,i) > 1− ε. (3.8)

Then µ extends uniquely to a measure on (SN,Σ).
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If µ is symmetric with respect to the inversion of permutation, i.e. µ(Bi,j) = µ(Bj,i),
then the two conditions are equivalent to

∞∑
j=1

µ(Bi,j) = µ(SN) (3.9)

for any fixed i. Since SN = ∪jBi,j , the condition amounts to σ-additivity for a restricted
class of disjoint unions. Thus (3.8) is also a necessary condition.

Proof. It follows from the assumption of the theorem that for any ε > 0, there exist sets
C1, C2, . . . such that, for all i,

µ
(
{π ∈ SN : π−1(i) ∈ Ci and π(i) ∈ Ci}

)
> 1− 2−i−1ε. (3.10)

Then for any m, we have

µ
(
BC1...Cm
C′1...C

′
m

)
> 1− 1

2ε. (3.11)

We prove the following property, that is equivalent to σ-additivity in Σ′. For any decreasing
sequence (Gn) of sets in Σ′ such that µ(Gn) > ε for all n, we have limnGn 6= ∅. As we
have observed above, Gn can be written as

Gn = BAn1...Anm
A′n1...A

′
nm

(3.12)

for some finite m that depends on n. Without loss of generality, we can suppose that m > n
(choosing some sets to be N if necessary); we can actually take m = n (by restricting to
a subsequence if necessary). This allows to alleviate a bit the argument.

We have Gn∩Gn+1 = Gn+1. Using (3.3), we can choose the sets such that Ani ⊃ An+1,i

and A′ni ⊃ A′n+1,i for each i. The sets Ani, A′ni may be infinite. We therefore define the
finite sets Dni = Ani ∩ Ci and D′ni = A′ni ∩ Ci. Then

µ
(
BDn1...Dnn
D′n1...D

′
nn

)
= µ

(
Gn∩BC1...Cn

C1...Cn

)
> µ(Gn)− µ

([
BC1...Cn
C1...Cn

]c)
> 1

2ε.

(3.13)

The sets Dni, D
′
ni are finite and decreasing for fixed i. Let

Di = lim
n
Dni, D′i = lim

n
D′ni. (3.14)

For any k, there exists n large enough such that

BDn1...Dnn
D′n1...D

′
nn
⊂ BD1...Dk

D′1...D
′
k
⊂ Gk. (3.15)

The set in the left side is not empty since it has positive measure. Thus the set in the
middle is not empty for any k. By Lemma 3.1, its limit as k → ∞ is not empty, which
proves that limkGk 6= ∅. �

Although Theorem 3.2 does not contain any reference to space, we see in the following
section that the spatial structure provides a natural way for (3.8) to be fulfilled in certain
cases.
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3.3. Permutation cycles and probability measure. Here we discuss the connection
between the considerations of the two previous subsections, and the spatial structure. The
set of permutations where i belongs to a cycle of length n can be expressed as

B
(n)
i = ∪

j1,...,jn

n

∩
i=1

Bji−1,ji (3.16)

where j−1, . . . , jn are distinct integers, and where we set j0 ≡ jn. The union is countable
and B

(n)
i belongs to the σ-algebra Σ. The event where i belongs to an infinite cycle is

then

B
(∞)
i =

[
∪

n > 1
B

(n)
i

]c
(3.17)

and it also belongs to Σ. We can introduce the random variable `i for the length of the cycle
that contains i. It can take the value ∞. Since `−1

i ({n}) = B
(n)
i for any n = 1, 2, . . . ,∞,

we see that `i is measurable.
In general the probability distribution of `i depends on i. Thus we average over points

in a large domain. Let x ⊂ Rd be a countable set with no accumulation points (that is,
if Λ ⊂ Rd is bounded, then x ∩ Λ is finite). The elements x1, x2, . . . of x can be ordered
according to their distance to the origin. More exactly, we suppose that for any cube Λ
centered at the origin, there exists N such that xi ∈ Λ iff i 6 N . Let V be the volume of
Λ. We introduce the density of points in cycles of length between m and n, by

%(Λ)
m,n(π) = 1

V #
{
i = 1, . . . , N : m 6 `i(π) 6 n

}
. (3.18)

This expression is of course very similar to Eq. (2.5) for the model in finite volume.
Next we define the relevant measure on SN. Let SN be the set of permutations that are

trivial for indices larger than N :

SN = {π ∈ SN : π(i) = i if i > N}. (3.19)

We define the finite volume probability of a set B in the semiring Σ′ by

ν
(Λ)
x (B) =

1
Y (xΛ)

∑
π∈B∩SN

e−H(xΛ,π) . (3.20)

Here, xΛ = x ∩ Λ. The Hamiltonian H(xΛ, π) and the normalisation Y (xΛ) are given by
the same expression as in Section 2.

The existence of the thermodynamic limit turns out to be difficult to establish. If x
is a lattice such as Zd, or if x is the realisation of a translation invariant point process,
we expect that ν(Λ)

x (B) converges as V → ∞. We cannot prove such a strong statement,
but it follows from Cantor’s diagonal argument that there exists a subsequence (Vn) of
increasing volumes, such that ν(Λn)

x (B) converges for all B ∈ Σ′. (Here, Λn is the cube of
volume Vn centered at 0.) Thus we have existence of a limiting set function, νx, but we
cannot garantee its uniqueness.

If ξ involves a cutoff, i.e. if e−ξ(x) is zero for x large enough, (3.8) is fulfiled and νx

extends to an infinite volume measure thanks to Theorem 3.2. But we cannot prove the
criterion of the theorem for more general ξ, not even the Gaussian. It is certainly true,
though.

For relevant choices of point processes and of permutation measures, we expect that
limV→∞ %

(Λ)
m,n(π) exists for a.e. x and a.e. π. Let %m,n denote the limiting random variable.
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It allows to define the expectation

E(%m,n) =
∫

dµ(x)
∫

dνx(π)%m,n(π). (3.21)

It would be interesting to obtain properties such as concentration of the distribution of
%m,n. The simplest case should be the Poisson point process.

3.4. Finite vs infinite volume. The finite volume setting of Section 2 can be rephrased
in the infinite volume setting as follows. Let µ(Λ,N) be the point process on Rd such that

µ(Λ,N)(dx) =

{
Y (x)

Z(Λ,N)N !dx if x ⊂ Λ and |x| = N ,

0 otherwise.
(3.22)

Next, let ν(Λ)
x be as in (3.20). For Λ1 ⊃ Λ2 ⊃ Λ3, let us consider the expectation

EΛ1,Λ2,N (%(Λ3)
m,n ) =

∫
dµ(Λ1,N)(x)

∫
dν(Λ2)

x (π)%(Λ3)
m,n . (3.23)

This can be compared to Eqs (2.4) and (2.5). Namely, we have

EΛ,N (%m,n) = EΛ,Λ,N (%(Λ)
m,n). (3.24)

It would be interesting to prove that the infinite volume limits in (3.23) can be taken
separately. Precisely, we expect that

lim
Λ↗Rd

EΛ,ρ|Λ|(%m,n) = lim
Λ3↗Rd

lim
Λ2↗Rd

lim
Λ1↗Rd

EΛ1,Λ2,ρ|Λ1|(%
(Λ3)
m,n ). (3.25)

4. A regime without infinite cycles

At low density the jumps are very much discouraged and the typical permutations
resemble the identity permutation, up to few small cycles here and there. In this section
we give a sufficient condition for the absence of infinite cycles. We consider the infinite
volume framework. The condition has two parts: (a) a bound on the strength of the
interactions; (b) in essence, that the points of x lie far apart compared to the decay length
of e−ξ . Here, B(γ) denotes the set of permutations where the cycle γ is present.

Theorem 4.1. Let x ⊂ Rd be a countable set, and let i be an integer. We assume the
following conditions on interactions and on jump factors, respectively.

(a) There exists 0 6 s < 1 such that for all cycles γ = (j1, . . . , jn) ⊂ N long enough,
with j1 = i, and all permutations π ∈ B(γ),∑

A⊂N
A∩γ 6=∅

∣∣∣V ((xj , xπ(j))j∈A
)
− V

(
(xj , xπ(j))j∈A

)∣∣∣ 6 s n∑
j=1

ξ(xj − xj−1),

with x0 ≡ xn, and where π is the permutation obtained from π by removing γ, i.e.

π(j) =

{
π(j) if j 6= j1, . . . , jn,

j if j = jk for some k.

(b) With the same s as in (a),∑
n > 1

∑
γ=(j1,...,jn)

j1=i

n∏
k=1

e−(1−s)ξ(xjk−xjk−1
) <∞.
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Then we have
lim
n→∞

lim
V→∞

∑
k > n

ν
(Λ)
x (B(k)

i ) = 0.

The condition (a) is stated “for all cycles long enough”, i.e. it must hold for all cycles of
length n > n0, for some fixed n0 that depends on i only. This weakening of the condition
is useful; many points are involved, they cannot be too close, and

∑
ξ(·) in the right side

cannot be too small.
If νx extends to a measure on Σ, then

lim
n→∞

lim
V→∞

∑
k > n

ν
(Λ)
x (B(k)

i ) = νx(B(∞)
i ), (4.1)

and the theorem states that νx(B(∞)
i ) = 0.

An open problem is to provide sufficient conditions on the Hamiltonian such that, in
the finite volume framework, we have

lim
M→∞

lim
V→∞

EΛ,ρV (%M,ρV ) = 0.

Proof of Theorem 4.1. By definition,

ν
(Λ)
x (B(k)

i ) =
1

Y (xΛ)

∑
γ=(j1,...,jk)

j1=i

∑
π∈B(γ)

N

e−
Pk
l=1 ξ(xil−xil−1

)−
P
A∩γ 6=∅ V ((xj ,xπ(j))j∈A)−H(xΛ\γ ,π)

(4.2)
with B

(γ)
N = B(γ) ∩ SN . By restricting the sum over permutations, we get a lower bound

for the partition function:

Y (xΛ) >
∑

π∈B(γ)
N

exp
{
−
∑

A∩γ 6=∅

V ((xj , xπ(j))j∈A)−H(xΛ, π)
}
. (4.3)

Observe that H(xΛ\γ , π) = H(xΛ, π). Combining with the two conditions of the theorem,
we obtain ∑

k > n

ν
(Λ)
x (B(k)

i ) 6
∑
k > n

∑
γ=(j1,...,jk)

j1=i

n∏
l=1

e−(1−s)ξ(xjl−xjl−1
) . (4.4)

The right side does not depend on Λ, and it vanishes in the limit n→∞. �

5. The one-body model

5.1. Occurrence of infinite cycles. The occurrence of infinite cycles can be proved in
a large class of models with one-body Hamiltonians, with the critical density being exactly
known! Here the domain Λ is the cubic box of size L, volume V = Ld. We fix the density
ρ of points, that is, we take N = ρV .

Recall the definition (2.5) for the random variable %m,n that gives the density of points
in cycles of length between m and n. We consider the Hamiltonian

H(x, π) =
N∑
i=1

ξΛ(xi − xπ(i)), (5.1)

where the function ξΛ is a slight modification of the function ξ, defined by the relation

e−ξΛ(x) =
∑
y∈Zd

e−ξ(x−Ly) . (5.2)
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Our conditions on ξ ensure that the latter sum is finite, and that ξΛ converges pointwise
to ξ as V → ∞. This technical modification should not be necessary, but it allows to
simplify the proof of Theorem 5.1 below. In essence, this amounts to choosing periodic
boundary conditions.

Let C =
∫

e−ξ . We suppose that the Fourier transform of e−ξ(x) is nonnegative, and
we denote it C e−ε(k) : For k ∈ Rd,

C e−ε(k) =
∫

Rd
e−2πikx e−ξ(x) dx (5.3)

The “dispersion relation” ε(k) always satisfies

• ε(0) = 0; ε(k) > a|k|2 for small k (indeed, the Laplacian of e−ε(k) would otherwise
be zero at k = 0; then

∫
|x|2 e−ξ(x) dx = 0, which is absurd).

• ε(k) > 0 uniformly in k away from zero;
•
∫

e−ε(k) dk = C−1 <∞.

Among many examples of functions that satisfy the conditions above, let us mention
several important cases.

(1) The Gaussian:

e−ξ(x) = e−|x|
2/4β , ε(k) = 4π2β|k|2, C = (4πβ)d/2. (5.4)

(2) In dimension d = 3, the exponential:

e−ξ(x) = e−|x|/β , ε(k) = 2 log[1 + (2πβ|k|)2], C = 8π/β3. (5.5)

(3) In d = 3, a sufficient condition for positive Fourier transform is that

1
r

(
e−ξ(r)

)′′ (5.6)

be monotone decreasing; here, ξ depends on r = |x| only. See e.g. [12] and refer-
ences therein. Thus there exist functions e−ξ with compact support and positive
Fourier transform.

(4) In d = 1,

e−ξ(x) = (|x|+ 1)−3/2. (5.7)

Its Fourier transform is positive by Lemma B.1. It can be checked that ε(k) ∼ |k|1/2
for small k, so that its critical density is finite.

We define the critical density by

ρc =
∫

Rd

dk
eε(k) − 1

. (5.8)

The critical density is finite for d > 3, but it can be infinite in d = 1, 2. The following the-
orem claims that infinite cycles are present for ρ > ρc only, and that they are macroscopic.
It extends results of Sütő for the ideal Bose gas [25], which corresponds to the Gaussian
case ξ(x) ∼ |x|2. The theorem also applies when ρc =∞.
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Theorem 5.1. Let ξ satisfy the assumptions above. Then for any 0 < a < b < 1, and
any s > 0,

(a) lim
V→∞

EΛ,ρV (%1,V a) =

{
ρ if ρ 6 ρc;
ρc if ρ > ρc;

(b) lim
V→∞

EΛ,ρV (%V a,V b) = 0;

(c) lim
V→∞

EΛ,ρV (%V b,sV ) =


0 if ρ 6 ρc;
s if 0 6 s 6 ρ− ρc,

ρ− ρc if 0 6 ρ− ρc 6 s.

The rest of this section is devoted to the proof of this theorem.

5.2. Fourier representation for spatial permutations. The first step is to reformu-
late the problem in the Fourier space. In the Gaussian case, ξ(x) = |x|2, this is tradition-
ally done using the Feynman-Kac formula and unitary transformations of Hilbert spaces.
There is no Feynman-Kac formula for our more general setting, but we can directly use
the Fourier transform. This actually simplifies the situation.

Here and in the sequel, we use the definition (5.3) for the Fourier transform. Let Λ be
the unit cube, i.e. we fix the length to L = 1. For f ∈ L1(Rd), let fΛ(x) =

∑
y∈Zd f(x+y);

notice that fΛ ∈ L1(Λ).

Lemma 5.2. Let f ∈ L1(Rd). For any n = 1, 2, . . . , we have∫
Λn

dx1 . . . dxn
n∏
i=1

fΛ(xi − xi−1) =
∑
k∈Zd

f̂(k)n.

(By definition, x0 = xn.)

Proof. The n-th convolution of the function fΛ with itself satisfies

(f∗nΛ )(x) =
∫

dx1 . . . dxn−1fΛ(x1)fΛ(x2 − x1) . . . fΛ(x− xn−1). (5.9)

The product
∏
fΛ(xi − xi−1) is translation invariant, so that∫

Λn
dx1 . . . dxn

n∏
i=1

fΛ(xi − xi−1) =
∫

Λn
dx1 . . . dxnfΛ(x1)fΛ(x2 − x1)fΛ(−xn−1)

= f∗nΛ (0)

=
∑
k∈Zd

f̂∗nΛ (k)

=
∑
k∈Zd

f̂(k)n.

(5.10)

The hat symbol in the third line denotes the L2(Λ)-Fourier transform; but in the fourth
line, it denotes the L2(Rd)-Fourier transform. �

We will use a corollary of this lemma.
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Corollary 5.3. Let Λ be a cube of size L, Λ∗ = ( 1
LZ)d be the dual space, and let fΛ(x) =∑

y∈Zd f(x+ Ly). Then for any permutation π ∈ SN we have:∫
ΛN

dx1 . . . dxN
N∏
i=1

fΛ(xi − xπ(i)) =
∑

k1,...,kN∈Λ∗

N∏
i=1

δki,kπ(i)

N∏
i=1

f̂(ki).

Proof. It is enough to consider the case L = 1, the general case can be obtained by scaling.
The multiple integral factorises according to the cycles of the permutation. Using Lemma
5.2 for each cycle, we get the result. �

We are now in position to reformulate the problem in the Fourier space. By Corollary
5.3, we have the relation

EΛ,N (θ) =
1

Z ′(Λ, N)N !

∑
π∈SN

θ(π)
∑

k1,...,kN∈Λ∗

e−
PN
i=1 ε(ki)

N∏
i=1

δki,kπ(i)
(5.11)

with Z ′(Λ, N) = C−NZ(Λ, N).
A simpler expression than (5.11) is available for random variables invariant under trans-

position, i.e. θ ∈ RN . To obtain it, we introduce the set NΛ of “occupation numbers” on
Λ∗. An element n ∈ NΛ is a sequence of integers n = (nk), nk = 0, 1, 2, . . . , indexed by
k ∈ Λ∗. We denote by NΛ,N the set of occupation numbers with total number N :

NΛ,N =
{

n ∈ NΛ :
∑
k∈Λ∗

nk = N
}
. (5.12)

Let k = (k1, . . . , kN ) be an N -tuple of elements of Λ∗. We can assign an element n = n(k)
in NΛ,N by defining, for each k ∈ Λ∗,

nk = #{i = 1, . . . , N : ki = k}. (5.13)

In other words, nk is the number of occurrences of the vector k in k. The map k 7→ n(k)
is onto but not one-to-one; the number of k’s that are sent to a given n is equal to

N !
/ ∏
k∈Λ∗

nk!.

We now introduce probabilities for Fourier modes, permutations, and occupation num-
bers. The sample space is (Λ∗)N × SN ; it is discrete, and we consider the discrete σ-
algebra. When taking probabilities, we write k × π for {(k, π)}; k for {k} × SN ; n for
{k : n(k) = n} × SN and π for (Λ∗)N × {π}. We define the probability PΛ,N by

PΛ,N

(
k × π

)
=

{
1

Z′(Λ,N)N ! e−
PN
i=1 ε(ki) if ki = kπ(i) for all i,

0 otherwise.
(5.14)

Here, k = (k1, . . . , kN ). Summing over permutations, we get

PΛ,N (k) =
1

Z ′(Λ, N)N !
e−

P
k∈Λ∗ ε(k)nk

∏
k∈Λ∗

nk! (5.15)

with (nk) = n(k). Finally, summing over Fourier modes that are compatible with occu-
pation numbers yields

PΛ,N (n) =
1

Z ′(Λ, N)
e−

P
k∈Λ∗ ε(k)nk . (5.16)
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It follows that the partition function Z ′(Λ, N) can be expressed using occupation numbers
as

Z ′(Λ, N) =
∑

n∈NΛ,N

e−
P
k∈Λ∗ ε(k)nk . (5.17)

These definitions allow to express EΛ,N (θ) in an illuminating form.

Lemma 5.4. For any θ ∈ RN ,

EΛ,N (θ) =
∑

n∈NΛ,N

PΛ,N (n)
∑
π∈SN

θ(π)PΛ,N (π|k),

with k any N -tuple of Fourier modes that is compatible with n, i.e. such that n(k) = n.

Proof. Using the definitions (5.14)–(5.16), the expectation (5.11) of θ can be written as

EΛ,N (θ) =
∑

k∈(Λ∗)N

∑
π∈SN

θ(π)PΛ,N (k × π)

=
∑

k∈(Λ∗)N

PΛ,N (k)
∑
π∈SN

θ(π)PΛ,N (π|k).
(5.18)

The latter sum does not depend on the ordering of the ki’s — it depends only on occupation
numbers (notice that PΛ,N (π|σ(k)) = PΛ,N (σ−1πσ|k) for any σ ∈ SN ). The lemma follows
from (5.16). �

Lemma 5.5.

∑
π∈SN

%m,n(π)PΛ,N (π|k) =
1
V

∑
k∈Λ∗


n−m+ 1 if 1 6 m 6 n 6 nk
nk −m+ 1 if 1 6 m 6 nk 6 n
0 if nk < a 6 b.

Proof. It follows from (5.14) that, given k, permutations are uniformly distributed (over
compatible permutations). That is,

PΛ,N (π|k) =

{
1/
∏
k∈Λ∗ nk! if kπ(i) = ki for all i,

0 otherwise.
(5.19)

Given k = (k1, . . . , kN ), a permutation π that leaves it invariant can be decomposed into
a collection (πk), πk ∈ Snk , of permutations for each Fourier mode, namely∑

π∈SN

%m,n(π)PΛ,N (π|k) =
(∏
k∈Λ∗

∑
πk∈Snk

1
nk!

)
%m,n

(
(πk)k∈Λ∗

)
. (5.20)

In addition, we have

%m,n
(
(πk)k∈Λ∗

)
=

1
V

∑
k∈Λ∗

Nm,n(πk), (5.21)

with Nm,n(π) being the number of indices that belong to cycles of length between m and
n. We obtain ∑

π∈SN

%m,n(π)PΛ,N (π|k) =
1
V

∑
k∈Λ∗

1
nk!

∑
πk∈Snk

Nm,n(πk). (5.22)
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We see that modes have been decoupled; further, we only need to average Nm,n(π) over
uniform permutations. One easily checks that the probability for an index to belong to a
cycle of length `, with N indices, is equal to 1/N for any `. Then

1
N !

∑
π∈SN

Nm,n(π) = n−m+ 1, (5.23)

for integers 1 6 m 6 n 6 N . The lemma follows. �

We have all elements for the proof of Theorem 5.1.

Proof of Theorem 5.1. We introduce a set Aη of occupation numbers that is typical. With
ρ0 = max(0, ρ− ρc), let

Aη =
{

n ∈ NΛ,N :
∣∣∣n0

V
− ρ0

∣∣∣ < η;
∑

0<|k|<V −η
nk < ηV ;nk < V 3η for any |k| > V −η

}
.

(5.24)
Notice that, for any n ∈ Aη,

min(ρ, ρc)V − 2ηV 6
∑

|k| > V −η

nk 6 min(ρ, ρc)V + ηV. (5.25)

It is proved in Proposition A.2 that PΛ,N (Aη)→ 1 as V,N →∞, for any η > 0. Together
with Lemmas 5.4 and 5.5, we obtain, with N = ρV ,

lim
V→∞

EΛ,ρV (%m,n) = lim
V→∞

∑
n∈Aη

PΛ,N (n)
[
%(0)
m,n(n) + %(1)

m,n(n) + %(2)
m,n(n)

]
. (5.26)

We partitioned Λ∗ into the disjoint union of M (0) = {0}, M (1) = {k : 0 < |k| < V −η}, and
M (2) = {k : |k| > V −η}, and we introduced

%(i)
m,n(n) =

1
V

∑
k∈M(i)

[
(n−m+ 1)χ[n,∞)(nk) + (nk −m+ 1)χ[m,n)(nk)

]
. (5.27)

First, we note that %
(1)
m,n(n) < η for any m,n, so this term does not contribute in (5.26).

Next, assuming that 3η < a < b, we have

min(ρ, ρc)− 2η 6 %
(2)
1,V a(n) =

1
V

∑
|k| > V −η

nk 6 min(ρ, ρc) + η. (5.28)

We used (5.25). In addition, we observe that %
(2)

V a,V b
(n) and %

(2)

V b,sV
(n) are zero for n ∈ Aη.

Let us turn to %
(0)
m,n. We have

%
(0)
1,V a(n) + %

(0)

V a,V b
(n) < V b−1, (5.29)

so these terms do not contribute in (5.26). Finally, we have

%
(0)

V b,sV
(n) =


0 if ρ 6 ρc,
n0
V −

V b+1
V if ρ > ρc and n0 6 sV,

s− V b+1
V if ρ > ρc and n0 > sV.

(5.30)

Inserting these informations in (5.26) yields the theorem. �
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6. The quantum Bose gas

Einstein understood in 1925 that non-interacting bosons undergo a phase transition
where a single particle state becomes macroscopically occupied. Ever since the Bose gas
has stirred the interest of physicists and mathematical physicists. The first question that
theoreticians needed to resolve was whether Bose-Einstein condensation also occurs in
interacting systems, and what is the order parameter. Feynman introduced in 1953 what is
now refered to as the Feynman-Kac representation [8]. It involves “space-time” trajectories
and permutations, and Feynman emphasised the rôle played by long cycles. The correct
order parameter, called “off-diagonal long-range order”, was proposed shortly afterwards
by Penrose and Onsager [22]. But cycles did not disappear, and it was suggested in 1987
that winding cycles are related to superfluidity [23]. In addition, Sütő made precise the
notion of infinite cycles and he showed that it is equivalent to Bose-Einstein condensation
in the ideal gas [24, 25]. An exact formula made this relation more explicit [26].

There are many open questions, of interest to physicists and mathematicians. The
relationship between Bose-Einstein condensation, superfluidity, and infinite cycles, has yet
to be clarified. The ideal gas can condense (if d > 3) but it is never superfluid. Interacting
bosons in one or two dimensions do not condense but they may be superfluid. Infinite
cycles seem related to Bose-Einstein condensation. It was argued in [27], however, that
infinite cycles may be present in a solid at low temperature, so they do not automatically
imply the existence of a condensate (nor a superfluid). On the other hand, it is expected
that interacting bosons in three dimensions have a transition to a Bose condensate and
a superfluid, and that this transition takes place at the same critical temperature. We
also expect the critical temperature for infinite cycles to be the same. It is therefore of
physical relevance to consider infinite cycles in the Feynman-Kac representation of the
Bose gas. We discuss in Subsection 6.1 the relation between the Bose gas and models of
spatial permutations. The latter should help us understand the effects of interactions on
the critical temperature. This is discussed in Subsection 6.2.

The Bose gas has also been the object of many interesting mathematical studies. We
only refer to [29] for a discussion of Bogoliubov theory and related work, and to [18] for
remarkable results on the ground state of the interacting gas.

6.1. Feynman-Kac representation of the Bose gas. The state space for a system
of N identical bosons in a cube Λ ⊂ Rd (size L, volume V = Ld) is the Hilbert space
L2

sym(ΛN ) of complex square-integrable symmetric functions on ΛN . The Hamiltonian is
the Schrödinger operator

H = −
N∑
i=1

∆i +
∑

1 6 i,j<N

U(xi − xj). (6.1)

Here, ∆i denotes the d-dimensional Laplacian for the i-th variable, and U(xi − xj) is
a multiplication operator that represents the interaction between particles i and j. We
choose the self-adjoint extension for periodic boundary conditions.

In order to get cycles, and following [24], we work in the Hilbert space L2(ΛN ) and we
consider the unitary representation of SN . That is, let Uπ denote the unitary operator

Uπf(x1, . . . , xN ) = f(xπ(1), . . . , xπ(N)). (6.2)
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If θ is a function of permutations, we can define its expectation by

〈θ〉Λ,N =
1

Z(Λ, N)N !

∑
π∈SN

θ(π)TrUπ e−βH . (6.3)

The Feynman-Kac formula expresses the operator e−βH as an integral operator, whose
kernel is given by

K(x1, . . . , xN ; y1, . . . , yN ) =
∫

dW 2β
x1y1

(ω1) . . .
∫

dW 2β
xNyN

(ωN )

exp
{
−

∑
1 6 i<j 6 N

∫ 2β

0
U(ωi(s)− ωj(s))ds

}
. (6.4)

Here, the Wiener measure W β
xy describes a Brownian bridge between x and y in time β,

with periodic boundary conditions. We refer to [11] for an excellent introduction to the
subject. We have ∫

dW β
xy(ω) =

∑
z∈Zd

gβ(x− y + Lz) ≡ g(Λ)
β (x− y), (6.5)

where gβ denotes the normalised Gaussian function

gβ(x) =
1

(2πβ)d/2
e−|x|

2/2β . (6.6)

The sum over z in (6.5) accounts for periodic boundary conditions. For large L the
functions g(Λ)

β and gβ are almost identical. If f is a function Rdn → R, and 0 < t1 < · · · <
tn < β are ordered “times”, we have∫

dW β
xy(ω)f

(
ω(t1), . . . , ω(tn)

)
=
∑
z∈Zd

∫
Rdn

dx1 . . . dxn

g
(Λ)
t1

(x− x1)g(Λ)
t2−t1(x2 − x1) . . . g(Λ)

β−tn(y − xn)f(x1, . . . , xn). (6.7)

By the Feynman-Kac formula, the partition function is

Z(Λ, N) = Tr L2
sym(ΛN ) e−βH =

1
N !

∑
π∈SN

∫
ΛN

dx1 . . . dxNK(x1, . . . , xN ;xπ(1), . . . , xπ(N)).

(6.8)
The sum over permutations is present because we work in the symmetric subspace. The
expectation of observables on permutations can be expressed as

〈θ〉Λ,N =
1

Z(Λ, N)N !

∑
π∈SN

θ(π)
∫

ΛN
dx1 . . . dxN K(x1, . . . , xN ;xπ(1), . . . , xπ(N)). (6.9)

The connection to the model of spatial permutations is immediate in absence of inter-
actions (U(x) ≡ 0): 〈θ〉Λ,N = EΛ,N (θ) with ξ(x) = |x|2/4β, H(k) = 0 for k > 2, and
G(x) ≡ 0.
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6.2. Discussion: Relevant interactions for spatial permutations. The models of
spatial random permutations retain some of the features of the quantum Bose gas in the
Feynman-Kac representation, but not all of them. The interactions between quantum
particles translate into many-body interactions for permutations. However, an expansion
reveals that to lowest order the interaction is two-body; precisely, the interaction between
jumps x 7→ y and x′ 7→ y′ is given by

V (x, y, x′, y′) =
∫ [

1− e−
1
4

R 4β
0 U(ω(s))ds

]
dŴ 4β

x−x′,y−y′(ω) (6.10)

for x 6= y. Here, Ŵ t
x,y = g−1

t (x − y)W t
x,y is a normalised Wiener measure,

∫
dŴ t

x,y = 1.
If U consists of a hard-core potential of radius a, we notice that V (x, y, x′, y′) is equal to
the probability that a Brownian bridge, from x− x′ to y− y′, intersects the ball of radius
a centered at 0.

The computation of (6.10) can be found in [28]; it is partly justified by a cluster expan-
sion, although a rigorous result is still lacking. We expect that the critical temperature
for the occurrence of infinite cycles is the same for 〈·〉Λ,N and EΛ,N (·) to lowest order in
the strength of the interaction potential.

An important question about Bose systems concerns the effect of interactions on the
critical temperature. Over the years physicists gave several, conflicting answers. But a
consensus has recently emerged in the physics literature, mostly from path-integral Monte-
Carlo numerical studies. The critical temperature T (a)

c , as a function of the “scattering
length” a of the interaction potential (see e.g. [18] for the definition), behaves in three
dimensions as

T
(a)
c − T (0)

c

T
(0)
c

= cρ1/3a+ o(ρ1/3a), (6.11)

with c ≈ 1.3. See [2, 13, 14, 19] and references therein. The model of spatial random
permutations should give the exact correction to the critical temperature, i.e. the correct
constant c in (6.11).

It is worth discussing the effects of interactions on spatial permutations in detail. They
both modify the point process and the measure on permutations. Let µ(a) denote the
point process for an interaction potential of scattering length a, and ν

(a)
x the measure on

permutations. We can assign different parameters to these two measures, so as to have
the expectation

E(a,a′)(θ) =
∫

dµ(a)(x)
∫

dν(a′)
x (π)θ(π). (6.12)

Let us fix the particle density, and let T (a,a′)
c denote the critical temperature for the

occurrence of infinite cycles. Of course, T (a)
c = T

(a,a)
c . For small a we should have

T
(a)
c − T (0)

c

T
(0)
c

=
T

(a,0)
c − T (0)

c

T
(0)
c

+
T

(0,a)
c − T (0)

c

T
(0)
c

+ o(a). (6.13)

The first question is whether both corrections are linear in a; if not, we could happily
dismiss one. This formula may be useful in numerical simulations. The second term in
the right side involves the point process for the ideal gas, while permutation jumps are
interacting. It can be easily calculated numerically since the set of permutations is discrete.
To know the corresponding linear behaviour would already provide some information. The
first term involves the positions of particles, and it may be difficult to generate a typical
realisation of the points. In any case, the random permutation approach with Eq. (6.10)
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is much easier than path-integral Monte-Carlo simulations, and it should yield the same
result to lowest order.

7. A simple model of spatial random permutations with interactions

In the preceding section we have discussed a two-body interaction that is exactly related
to the quantum Bose gas. Rigorous results seem difficult to get, though. In this section we
simplify the interaction so as to retain only the largest contribution. Our approximation
is not exact, but the model may be of interest as an effective model, and it is exactly
solvable.

7.1. Approximation and definition of the model. It helps to think of particles as
describing Brownian motions, and to interact whenever they cross each other’s paths.
Clearly, particles that belong to the same 2-cycle interact a lot. Our approximation
consists in retaining only these interactions, and in neglecting the rest. Thus we consider
the Hamiltonian

H̃(x, π) =
1

4β

N∑
i=1

|xi − xπ(i)|2 +
∑

1 6 i<j 6 N
π(i)=j,π(j)=i

V (xi, xj , xj , xi). (7.1)

The potential V (·) is the exact jump interaction given in (6.10). To lowest order in the
scattering length, we find that [4]

V (x, y, y, x) =
2a
|x− y|

+O(a2). (7.2)

If θ is a random variable that depends only on permutations, its expectation is given by

EΛ,N (θ) =
1

Z(Λ, N)N !

∑
π∈SN

θ(π)
∫

ΛN
dx e−H̃(x,π) . (7.3)

This allows to simplify the model (7.1) further, without additional approximation. Namely,
we introduce the simpler Hamiltonian

H(α)(x, π) =
1

4β

N∑
i=1

|xi − xπ(i)|2 + αN2(π), (7.4)

with N2(π) denoting the number of 2-cycles in the permutation π. Expectations with H̃

and H(α) are identical provided∫
ΛN

dx e−H̃(x,π) =
∫

ΛN
dx e−H

(α)(x,π) (7.5)

for any fixed permutation π. Both sides factorise according to the cycles of π. The
contribution of cycles of length 1,3,4,. . . is identical. We then obtain an equation for cycles
of length 2, namely∫

Λ2

dx1dx2 e−
1

2β
|x1−x2|2−V (x1,x2,x2,x1) =

∫
Λ2

dx1dx2 e−
1

2β
|x1−x2|2−α . (7.6)

Using (7.2), a few computations give [4]

α =
( 8
πβ

)1/2
a+O(a2). (7.7)
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We emphasise that the approximation consists in retaining only interactions within 2-
cycles. Computations are exact afterwards, at least to lowest order in the scattering length
of the interaction potential U between the quantum particles.

7.2. Pressure and critical density. We now generalise a bit the model above by con-
sidering more general one-body terms, as we have done throughout this article. Let

H(α)(x, π) =
N∑
i=1

ξΛ(xi − xπ(i)) + αN2(π), (7.8)

with ξΛ as in Section 5, and α is a positive parameter.
The pressure of this simple model can be computed exactly. One gets the critical density

by analogy with the ideal gas. We state below a result about infinite cycles for a larger
density, see Theorem 7.2. It remains an open problem to show that infinite cycles are
present all the way to the critical density.

For given α, the pressure depends on the chemical potential µ and is given by

p(α)(µ) = lim
V→∞

1
V

logZ(Λ, µ) (7.9)

with Z(Λ, µ) the “grand-canonical partition function”. We can define it directly in the
Fourier space, by

Z(Λ, µ) =
∑
N > 0

eµN

N !

∑
k1,...,kN∈Λ∗

∑
π∈SN

e−αN2(π)
N∏
i=1

e−ε(ki) δki,kπ(i)
. (7.10)

We need the pressure of the ideal gas

p(0)(µ) = −
∫

Rd
log
(
1− e−(ε(k)−µ)

)
dk. (7.11)

Theorem 7.1. For µ < 0, the limit (7.9) exists, and

p(α)(µ) = p(0)(µ)− 1
2 e2µ [1− e−α ]

∫
Rd

e−2ε(k) dk.

Notice that the model is defined only for µ < 0, like the ideal gas. Its derivative at
µ = 0− gives the critical density, and we find

ρ(α)
c =

∂p(α)

∂µ

∣∣∣
µ=0−

= ρ(0)
c − [1− e−α ]

∫
e−2ε(k) dk. (7.12)

The first term of the right side is equal to the critical density of the ideal gas, Eq. (5.8).
The second term is the correction due to our simple interaction.

The physically relevant situation is d = 3, ξ(x) = |x|2/4β, and α in (7.7). We find that,
to lowest order in a,

T
(a)
c − T (0)

c

T
(0)
c

≈ c̃ ρ1/3a, (7.13)

with c̃ = 0.37. The details of the computations can be found in [4]. This formula can be
compared with (6.11). Our constant has the correct sign, and is about a quarter of the
expected constant. This suggests that the simplified model accounts for some of the effects
of interactions on the critical temperature for Bose-Einstein condensation. Besides, it
allows for simple but illuminating heuristics: Interactions discourage small cycles; then all
other cycles are favoured, including infinite cycles. As a consequence, repulsive interactions
increase the critical temperature (or decrease the critical density).
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Proof of Theorem 7.1. From (7.10), we have

Z(Λ, µ) =
∑

(nk)k∈Λ∗

∏
k∈Λ∗

[
e−(ε(k)−µ)nk

∑
πk∈Snk

1
nk!

e−αN2(πk)

]
. (7.14)

We decomposed the permutation π into permutations (πk) for each Fourier mode, and we
also used

N2(π) =
∑
k∈Λ∗

N2(πk). (7.15)

Notice that the chemical potential needs to be strictly negative, as in the ideal gas. We
get

p(α)(µ) = lim
V→∞

1
V

∑
k∈Λ∗

log
[∑
n > 0

e−(ε(k)−µ)n
∑
π∈Sn

1
n!

e−αN2(π)

]
. (7.16)

Let us compute the bracket above. For given π ∈ Sn, let rj denote the number of cycles
of length j. Then

∑
j jrj = n, and the number of permutations for given (rj) is equal to

n!
/ ∏
j > 1

jrjrj !.

The bracket in (7.16) is then equal to∑
n > 0

1
n!

∑
r1,r2,... > 0P

j jrj=n

n!∏
j > 1 j

rjrj !
e−(ε(k)−µ)

P
j jrj e−αr2

=
∑

r1,r3,r4,... > 0

∏
j=1,3,4,...

1
rj !
[

1
j e−j(ε(k)−µ)

]rj ∑
r2 > 0

1
r2!
[

1
2 e−2(ε(k)−µ)−α ]r2

= exp
{ ∑
j=1,3,4,...

1
j e−j(ε(k)−µ) + 1

2 e−2(ε(k)−µ)−α
}

= exp
{
− log(1− e−(ε(k)−µ) )− 1

2 e−2(ε(k)−µ) [1− e−α ]
}
.

We can insert this into (7.16). In the limit V →∞ the expression converges to a Riemann
integral. �

7.3. Occurrence of infinite cycles. Given α ∈ [0,∞], the expectation of a random
variable on permutations is given by

EΛ,N (θ) =
1

Z(Λ, N)N !

∑
π∈SN

θ(π) e−αN2(π)

∫
ΛN

dx1 . . . dxN
N∏
i=1

e−ξΛ(xi−xπ(i)) . (7.17)

The normalisation Z(Λ, N) depends on α, although the notation does not make it explicit.
We expect that the claims of Theorem 5.1 extend to α 6= 0, with the critical density given
by (7.12) instead of (5.8). But we only state and prove a weaker claim.

Theorem 7.2. For any 0 < b < 1,

lim
V→∞

EΛ,ρV (%V b,ρV ) > ρ− 4
(1 + e−α )2

ρ(0)
c .



SPATIAL RANDOM PERMUTATIONS AND INFINITE CYCLES 23

Of course, the theorem is useful only if the right side is strictly positive. The proof is
similar to Theorem 5.1, but there is one important difference. We cannot invoke a set of
typical occupation numbers, such as Aη in Eq. (5.24). We prove below (Proposition 7.6)
that the zero Fourier mode is macroscopically occupied if the density is large enough. But
we need it to be strictly bigger than ρ

(0)
c , itself bigger than ρ

(α)
c .

Let us define
hn(α) =

1
n!

∑
π∈Sn

e−αN2(π) . (7.18)

Notice that hn(0) = 1. We introduce a probability on (Λ∗)N × SN that generalises Eq.
(5.14):

PΛ,N (k × π) =
1

Z ′(Λ, N)N !
e−αN2(π) e−

PN
i=1 ε(ki) (7.19)

if ki = kπ(i) for all i, it is zero otherwise. Summing over permutations, and over vectors k
that are compatibles with n, we get

PΛ,N (n) =
1

Z ′(Λ, N)

∏
k∈Λ∗

e−ε(k) hnk(α). (7.20)

We generalise Lemma 5.4.

Lemma 7.3. We have Z(Λ, N) = CNZ ′(Λ, N) with C =
∫

e−ξ ; and for any θ ∈ RN ,

EΛ,N (θ) =
∑

n∈NΛ,N

PΛ,N (n)
∑
π∈SN

θ(π)PΛ,N (π|k)

with k any N -tuple such that n(k) = n.

Proof. We use Corollary 5.3 to rewrite the expectation EΛ,N in the Fourier space:

EΛ,N (θ) =
1

Z(Λ, N)N !

∑
π∈SN

θ(π) e−αN2(π)
∑

k1,...,kN∈Λ∗

N∏
i=1

δki,kπ(i)
C e−ε(ki)

=
∑
π∈SN

θ(π)
∑

k∈(Λ∗)N

PΛ,N (k × π)

=
∑

k∈(Λ∗)N

PΛ,N (k)
∑
π∈SN

θ(π)PΛ,N (π|k).

(7.21)

One can sum first over n and then over compatible k’s. �

Next we gather some information on the functions hn(α) defined in (7.18).

Lemma 7.4. For α ∈ [0,∞], let δ = 1
2(1− e−α ) ∈ [0, 1

2 ].

(a) hn(α) =
∑bn

2
c

j=0
1
j!(−δ)

j.
(b) 1− δ 6 hn(α) 6 1.
(c) e−δ − δn/2/bn2 c! 6 hn(α) 6 e−δ + δn/2/bn2 c!.

Proof. Isolating the contribution of the cycle that contains 1, we get the following recursive
relation; for n > 2,

hn(α) =
1
n

n−1∑
j=0

hj(α)− 1
n

(1− e−α )hn−2(α). (7.22)



24 VOLKER BETZ AND DANIEL UELTSCHI

We also have h0(α) = h1(α) = 1. Now the formula in (a) can be proved by induction. (b)
is a consequence of the alternating series in (a). Notice that h2(α) = h3(α) = 1 − δ. (c)
follows from the expression

hn(α) = e−δ −
∑

j > bn
2
c+1

(−δ)j

j!
. (7.23)

Recall that alternating series of decreasing terms are bounded by their first term. �

Let us define Na,n(π) =
∑n

i=1
χ

[a,n](`i(π)). Note that Na,n(π) = V %a,n(π).

Lemma 7.5. Suppose a > 2, and let δ as in Lemma 7.4. For any m > 0,∑
π∈Sn

Na,n(π)
e−αN2(π)

hn(α)n!
> (n− a− 2m)(1− δm).

Proof. When summing over permutations, all indexes i in the definition of Na,n(π) are
equivalent, so that∑

π∈Sn

Na,n(π)
e−αN2(π)

hn(α)n!
= n

∑
π∈Sn

χ
[a,n](`1(π))

e−αN2(π)

hn(α)n!
. (7.24)

Summing over the lengths of the cycle that contains 1, we get∑
π∈Sn

Na,n(π)
e−αN2(π)

hn(α)n!
=

n∑
j=a

n(n− 1) . . . (n− j + 1)
∑

π∈Sn−j

e−αN2(π)

hn(α)n!

=
n∑
j=a

∑
π∈Sn−j

e−αN2(π)

hn−j(α)(n− j)!
hn−j(α)
hn(α)

.

(7.25)

We get a lower bound by summing up to n − 2m. By Lemma 7.4 (c), we have for
2 < j < n− 2m

hn−j(α)
hn(α)

>
e−δ − δm/m!

e−δ + δn/2/bn2 c!
> 1− δm. (7.26)

�

The last result that is needed for the proof of Theorem 7.2 is that our interacting
model displays Bose-Einstein condensation, in the sense that the zero Fourier mode is
macroscopically occupied.

Proposition 7.6. The expectation for the occupation of the zero Fourier mode is bounded
below by

lim
V→∞

EΛ,N

(
n0
V

)
> ρ− 4

(1 + e−α )2
ρ(0)

c .

Proof. We proceed as in Appendix B of [26]. We have

EΛ,N

(
n0
V

)
= ρ− 1

V

∑
k∈Λ∗\{0}

EΛ,N (nk), (7.27)
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and

EΛ,N (nk) =
∑
j > 1

PΛ,N (nk > j)

=
∑
j > 1

∑
n∈NΛ,N−j

e−ε(k)j

∏
k′∈Λ∗ e−ε(k

′)nk′ hnk′ (α)
Z ′(Λ, N)

hnk+j(α)
hnk(α)

.

(7.28)

The latter ratio is smaller than (1 − δ)−1 by Lemma 7.4 (b). By restricting occupation
numbers to n0 > j, we also have

Z ′(Λ, N) >
∑

n∈NΛ,N−j

∏
k∈Λ∗

e−ε(k)nk hnk(α)
hn0+j(α)
hn0(α)

> Z ′(Λ, N − j)(1− δ).
(7.29)

Then

EΛ,N (nk) 6 (1− δ)−2
∑
j > 1

e−ε(k)j = (1− δ)−2 1
eε(k) − 1

. (7.30)

It follows that

EΛ,N

(
n0
V

)
> ρ− (1− δ)−2 1

V

∑
k∈Λ∗\{0}

1
eε(k) − 1

. (7.31)

We get the proposition by letting V →∞. �

Proof of Theorem 7.2. From Lemma 7.3, we have

EΛ,N (%m,n) =
∑

n∈NΛ,N

PΛ,N (n)
∑
π∈SN

ki=kπ(i) ∀i

%m,n(π)
e−αN2(π)∏

k∈Λ∗ hnk(α)nk!
. (7.32)

Compatible permutations factorise according to Fourier modes, i.e. π = (πk) with πk ∈
Snk . Also, N2(π) =

∑
kN2(πk). Then

EΛ,N (%m,n) =
∑

n∈NΛ,N

PΛ,N (n)
(∏
k∈Λ∗

∑
πk∈Snk

e−αN2(πk)

hnk(α)nk!

)
%m,n

(
(πk)

)
=

∑
n∈NΛ,N

PΛ,N (n)
∑
k∈Λ∗

∑
πk∈Snk

%m,n(πk)
e−αN2(πk)

hnk(α)nk!
.

(7.33)

We keep only the term k = 0. Using Lemma 7.5, we obtain the lower bound

EΛ,N (%V b,N ) >
∑

n∈NΛ,N

PΛ,N (n)
n0 − 3V b

V
(1− δV b)

> EΛ,N

(
n0
V

)
− 4V b−1.

(7.34)

The claim follows from Proposition 7.6. �
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Appendix A. Macroscopic occupation of the zero Fourier mode.

In this appendix we investigate the random variable n 7→ n0 under the measure (5.16)
in the thermodynamic limit V → ∞, N = ρV , for all density parameters ρ. We want to
show that n0/V approaches a limit for each density ρ. We will actually show much more,
by giving the limiting moment generating function of n0/V . We partly follow Buffet and
Pulè [5], who considered the ideal Bose gas in arbitrary domains.

Theorem A.1. Let ρ0 = max(0, ρ−ρc), with ρc the critical density defined in (5.8). Then

lim
V→∞

EΛ,ρV ( eλn0/V ) = eλρ0

for any λ > 0.

Our first proof applies only when ρc is finite. We give below an argument that completes
the proof.

Proof when ρc <∞. It is shown in [26], Appendix B, that for all k ∈ Λ∗, we have

PΛ,N (nk > j) = e−ε(k)j Z
′(Λ, N − j)
Z ′(Λ, N)

. (A.1)

Since P (nk = j) = P (nk > j)− P (nk > j + 1), we find for b > 0

EΛ,N ( eνn0 ) =
1

Z ′(Λ, N)

N∑
j=0

eνj (Z ′(Λ, N − j)− Z ′(Λ, N − j − 1))

=
eνN

Z ′(Λ, N)

N∑
j=0

e−νj (Z ′(Λ, j)− Z ′(Λ, j − 1)). (A.2)

Here, we used the convention Z(Λ,−1) := 0 and the fact that PΛ,N (nk > N + 1) = 0.
Putting in N = bρV c and setting ν = λ/V we obtain

EΛ,ρV

(
eλn0/V

)
=

eλρ

Z ′(Λ, ρV )

ρΛ∑
j=0

e−
λ
V
j (Z ′(Λ, j)− Z ′(Λ, j − 1)). (A.3)

Above, we wrote ρV instead of bρV c and we will continue to do so, to simplify notation.
Now comes the clever insight of Buffet and Pulè [5]: In (A.3), both Z ′(Λ, ρV ) and the sum
over j can be written as integrals with respect to a purely atomic, V -dependent measure
µΛ on R+; since the functions that are being integrated will not depend on V , we only
need to study the limit of µΛ. The measure µΛ is given by

µΛ := CΛ

∞∑
j=0

(Z ′(Λ, j)− Z ′(Λ, j − 1))δj/V

on R+. δx denotes the Dirac measure at x, and the constant CΛ will be fixed later in order
to obtain a limit measure. From (A.3) it is now immediate that

EΛ,ρV

(
eλn0/V

)
= eλρ

∫
1[0,ρ](x) e−λx µΛ(dx)∫

1[0,ρ](x)µΛ(dx)
. (A.4)
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What makes the idea work is that we can actually calculate the Laplace transform of µΛ

and take the limit. We have∫ ∞
0

e−λx µΛ(dx) = CΛ

∞∑
j=0

e−
λj
V (Z ′(Λ, j)− Z ′(Λ, j − 1)) =

= CΛ(1− e−
λ
V )

∞∑
j=0

e−
λj
V Z ′(Λ, j) =

= CΛ(1− e−
λ
V ) exp

(
−
∑
k∈Λ∗

log
(

1− e−
λ
V
−ε(k)

))
=

= CΛ exp

− ∑
k∈Λ∗\{0}

log
(

1− e−
λ
V
−ε(k)

) .

The second equality above is just an index shift, the third is the well-known formula for
the pressure of the ideal Bose gas, Eq. (7.11), and the last line follows from ε(0) = 0. The
sum in the exponent of the last line is actually quite manageable. By the fundamental
theorem of calculus we have for each k 6= 0

log
(

1− e−
λ
V
−ε(k)

)
=

1
V

∫ λ

0

1
ey/V+ε(k) − 1

dy + log
(

1− e−ε(k)
)
,

and summation over k gives∑
k∈Λ∗\{0}

log
(

1− e−
λ
V
−ε(k)

)
=

∑
k∈Λ∗\{0}

log
(

1− e−ε(k)
)

+ λρc,Λ (A.5)

with

ρc,Λ =
1
λ

∫ λ

0

1
V

∑
k∈Λ∗\{0}

1
ey/V+ε(k) − 1

dy

The first term in (A.5) diverges as V →∞ and defines CΛ. The second term converges to
the critical density ρc: the integrand is decreasing as a function of y and converges to ρc

as a Riemann sum for each fixed y, since

e−y/V
1
V

∑
k∈Λ∗\{0}

1
eε(k) − 1

6
1
V

∑
k∈Λ∗\{0}

1
ey/V+ε(k) − 1

6
1
V

∑
k∈Λ∗\{0}

1
eε(k) − 1

.

Dominated convergence in y now proves convergence to ρc. We have thus shown that for
all λ > 0

lim
V→∞

∫ ∞
0

e−λxµΛ(dx) = e−λρc ,

and thus by the general theory of Laplace transforms µΛ → δρc weakly. When used in
(A.4), this shows the claim for ρ > ρc. For ρ < ρc, both denominator and numerator go
to zero, and we need a different argument: we note that by what we have just proved

lim
ρ↘ρc

lim
V→∞

EΛ,ρV ( eλn0/V ) = 1.

Since the expectation above can never be less than one, all we need to show is monotonicity
in ρ, i.e.

PΛ,N+1(n0 > j) > PΛ,N (n0 > j). (A.6)
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For this we use (A.1) and we obtain

PΛ,N+1(nk > j) = PΛ,N (nk > j)
PΛ,N+1(nk > 1)
PΛ,N−j+1(nk > 1)

,

so it will be enough to show (A.6) for j = 1. By (A.1) this means we have to show

Z ′(Λ, N)2 > Z ′(Λ, N − 1)Z ′(Λ, N + 1).

Davies [6] showed that the finite volume free energy is convex, which proves the inequality
above. �

Proof of Theorem A.1 when ρc =∞. We get from Eq. A.2, after some rearrangements of
the terms∣∣∣EΛ,N ( eλn0/V )− e−λ/V

∣∣∣ = (1− e−λ/V ) eλρ
N∑
i=0

e−λi/V e−V [qΛ(i/V )−qΛ(N/V )] . (A.7)

qΛ(ρ) is convex and its limit q(ρ) is strictly decreasing for ρ < ρc (and ρc = ∞ here).
Beside, we have qΛ(i/V ) − qΛ(N/V ) > b > 0, for all 0 6 i 6 N/2, uniformly in V and
N = ρV . The right side of (A.7) is then less than

(1− e−λ/V ) eλρ
[N/2∑
i=0

e−V b +
N∑

i=N/2

e−λi/V
]
.

This clearly vanishes in the limit V →∞. �

Recall the definition of the typical set of occupation numbers Aη in (5.24).

Proposition A.2. For any density ρ, and any η > 0,

lim
V→∞

PΛ,ρV (Aη) = 1.

Proof. Let us introduce the following sets of unlikely occupation numbers:

A(1) =
{

(nk) :
∣∣n0/V − ρ0

∣∣ > η
}
,

A(2) =
{

(nk) :
∑

0<|k|<V −η
nk > ηV

}
,

A(3) =
{

(nk) : nk > V 3η for some |k| > V −η
}
.

(A.8)

Then
Ac
η = A(1) ∪A(2) ∪A(3). (A.9)

It follows from Theorem A.1 that PΛ,ρV (A(1)) vanishes in the limit V → ∞. Equation
(A.1) can be written using free energies as

PΛ,N (nk > i) = e−ε(k)i e−V (qΛ(N−i
V

)−qΛ(N
V

)) . (A.10)

We have already mentioned that qΛ is convex, and the limit q is decreasing. Then

qΛ(ρ− ε)− qΛ(ρ) > ν, (A.11)

with ν > 0. In addition, ν > 0 below the critical density, or if the critical density is
infinite. Since

EΛ,N (nk) =
∑
i > 0

PΛ,N (nk > i), (A.12)
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we get a bound for the expectation of occupation numbers for k 6= 0, namely

EΛ,N (nk) 6
1

eε(k)+ν − 1
. (A.13)

From Markov’s inequality and the bound above, we get

PΛ,N (A(2)) 6

∑
0<|k|<V −η EΛ,N (nk)

ηV

6 η−1V −1
∑

0<|k|<V −η

1
eε(k)+ν − 1

.
(A.14)

The right side vanishes as V →∞: Indeed, this holds if the critical density is finite even
if ν = 0; and we know that ν > 0 if the critical density is infinite.

Finally, (A.10) implies that PΛ,N (nk > i) 6 e−ε(k)i . Since ε(k) > a|k|2 for small k, we
have for large V

PΛ,N (A(3)) 6
∑

|k| > V −η

PΛ,N (nk > V 3η)

6
∑

|k| > V −η

e−
1
2
aV η−ε(k)

6 V e−
1
2
aV η

∑
k∈Λ∗

1
V

e−ε(k) .

(A.15)

The prefactor of the last line goes to 0, while the sum converges to a finite Riemann
integral. The whole expression vanishes in the limit. �

Appendix B. Convexity and Fourier positivity

The case d = 1 of the following lemma was used to provide an example of a one-
dimensional system with finite critical density. The result is certainly known — we were
told that it may go back to Pólya — but it is easier to find a proof than a reference.

Lemma B.1. Let g : (0,∞) → (0,∞) such that
∫∞

0 rd−1g(r)dr < ∞, and such that
rd−1g(r) is convex. Then the function f(x) = g(|x|) on Rd has positive Fourier transform.

Proof. First, we show that for any convex function h on (0,∞), we have∫ n+1

n
h(u) cos(2πu)du > 0 (B.1)

for any integer n > 0. It is enough to consider the case n = 0; the general case follows
from a change of variables (translates of convex functions are convex). We have∫ 1

0
h(u) cos(2πu)du =

∫ 1/4

0

[
h(u)− h(1

2 − u)− h(1
2 + u) + h(1− u)

]
cos(2πu)du. (B.2)

We used the fact that

cos(2πu) = − cos(2π(1
2 − u)) = − cos(2π(1

2 + u)) = cos(2π(1− u)). (B.3)

We now show that the bracket in (B.2) is positive. Let α = 1/2
1−2u . Because h is convex,

h(1
2 − u) = h(αu+ (1− α)(1− u)) 6 αh(u) + (1− α)h(1− u),

h(1
2 + u) = h((1− α)u+ α(1− u)) 6 (1− α)h(u) + αh(1− u).
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This proves positivity of the bracket of (B.2), hence of (B.2) and (B.1). The case d = 1
of Lemma B.1 follows, since f̂(k) = 2

∫∞
0 f(r) cos(2π|k|r)dr.

For d > 2, let θ denote the angle between x and k, and let Ξ(θ) > 0 denote the measure
of all remaining angles (Ξ(θ) = 2 for d = 2, Ξ(θ) = 2π sin θ for d = 3). Then

f̂(k) =
∫ ∞

0
rd−1dr

∫ π

0
Ξ(θ)dθ g(r) cos(2π|k|r cos θ)

= 2
∫ π/2

0

Ξ(θ)dθ
(|k| cos θ)d

∫ ∞
0

duud−1g
( u

|k| cos θ

)
cos(2πu).

(B.4)

Now ud−1g( u
|k| cos θ ) is convex in u for given |k| and given 0 < θ < π

2 (scaled convex
functions are convex). The latter integral is positive by (B.1). �
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