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Abstract

We prove existence of infinite volume Gibbs measures relative to Brownian motion.
We require the pair potential W to fulfill a uniform integrability condition, but oth-
erwise our restrictions on the potentials are relatively weak. In particular, our results
are applicable to the massless Nelson model. We also prove an upper bound for path
fluctuations under the infinite volume Gibbs measures.
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1 Introduction

Let us define a probability measure on C([−T, T ],Rd) by

dµy,zT (x) =
1

ZT (y, z)
e−

R T
−T V (xs) ds−

R T
−T ds

R T
−T dtW (xt,xs,|t−s|) dWy,z

[−T,T ](x). (1)

on C([−T, T ],Rd). Here, T > 0, y, z ∈ Rd, Wy,z
[−T,T ] is pinned Brownian motion starting in

y at time −T and ending in z at time T , ZT (y, z) normalizes µy,zT to a probability measure,
and V : Rd → R and W : Rd×Rd×R → R are measurable functions with some additional
properties to be specified later. One choice of V and W that fits into the framework of
the present paper is

d = 3, V (x) = −1/|x| and W (x, y, t) = −1/(|x− y|2 + t2 + 1). (2)

A natural problem in the context of (1) is the existence and uniqueness, i.e. indepen-
dence of the ‘boundary conditions’ y, z ∈ Rd, of a limiting probability measure µ∞ on
C(R,Rd) as T → ∞ in (1). µ∞ will be called (infinite volume) Gibbs measure relative
to Brownian motion; this terminology already suggests a close relationship with statis-
tical mechanics. We will outline this connection as well as a link to the theory of large
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deviations toward the end end of this introduction, but first let us study (1) in its own
right.

An easy special case of (1) is obtained by choosing W = 0. Then, via the Feynman-Kac
formula, µx,yT is related to the Schrödinger operator H0 = −1

2∆ + V . If

H0 has a ground state ψ0 ∈ L2(Rd), (3)

then the infinite volume Gibbs measure exists and is given by the stationary solution
of the stochastic differential equation dXt = ∇ψ0

ψ0
(Xt) + dBt (see [18] or equations (14)

and (15)). We will take the point of view that the W 6= 0 case is a perturbation of the
W = 0 case. The existence problem for µ∞ can then be regarded as a generalization to the
problem of finding stationary solutions for stochastic differential equations. An important
difference of the two problems is that, unlike solutions to stochastic differential equations,
the limiting measure will not be the measure of a Markov process if W 6= 0.

When looking for reasonable conditions on V and W that ensure existence of µ∞, a
natural requirement on V is that it should lead to an infinite volume Gibbs measure at
least in the case W = 0. (3) is a sufficient condition for this. As far as the ‘perturbation’
W is concerned, we should require that its effect does not completely outweigh the effect
of the V . In other words, W has to be extensive, i.e.

lim sup
T→∞

1
T

∣∣∣∣∫ T

−T
ds

∫ T

−T
dtW (xs, xt, |s− t|)

∣∣∣∣ <∞ (4)

at least for a reasonable class of x ∈ C(R,Rd). While (4) may not be sufficient for the
existence of µ∞ in general, additional conditions on W should be more of a technical
nature.

As for uniqueness, already the case W = 0 shows [1] that we can only expect µ∞ to
be unique among the measures supported on a subset of C(R,Rd) which is characterized
by a condition on the growth of paths at infinity. Once this restriction is made, according
to the folklore a sufficient condition is that the interaction energy

I = sup
x∈C(R,Rd)

∣∣∣∣∫ 0

−∞
ds

∫ ∞

0
dtW (xt, xs, |t− s|)

∣∣∣∣ (5)

between left and right half of the path is finite. Such a strong result is not available at
present, but [16] and [13] have some results about uniqueness, and [16] gives an example
where uniqueness fails when (5) is not fulfilled. In the present work, we have nothing to
say about uniqueness, focussing on existence instead.

Several authors have by now studied the existence problem. All of them assume (4)
in some form, but also need additional restrictions on V and W . In [16], the first math-
ematical account on the subject, correlation inequalities are used, and consequently the
potentials V and W have to fulfill certain convexity assumptions. In [13], a cluster expan-
sion method is applied, requiring a small parameter (coupling constant) in front of W as
well as a V that is growing faster than quadratically at infinity. Recently, [11] used an in-
tegration by parts formula. His restrictions on W are weak, but strong assumptions on the
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asymptotic behaviour of V are needed. In particular, V has to grow at least quadratically
at infinity.

In this work we establish a new method for proving existence of µ∞, relying on a
stopping time estimate. The main advantage over the existing approaches is that our
restrictions on V are almost as weak as (3). All cases from [16, 13, 11] are covered, and in
addition we allow for V ’s which do not grow at infinity. For the pair potential W , the main
assumption essentially is that (4) holds uniformly in x ∈ C(R,Rd). In addition, we need a
‘pathwise shift condition’ that is somewhat implicit but easy to verify for many concrete
examples of W . If we assume that V fits in the framework of [16], [13] or [11], then on the
one hand the (uniform) integrability conditions on W that we impose are stronger than
those needed there. On the other hand, we neither need the convexity assumed in [16], nor
the small parameter of [13], nor the differentiability needed in [11]. An important feature
that our work shares with all of the above is that the interaction energy (5) between the
left and the right half-line is not assumed to be finite.

As mentioned before, there exist connections or (1) with statistical mechanics as well
as with the theory of large deviations. The latter connection is seen most clearly when we
replace the exponent in (1) by

−
∫ T

−T
V (xs) ds−

1
2T

∫ T

−T
ds

∫ T

−T
dt W̃ (xs, xt) (6)

with some nice function W̃ . (6) is then a functional of the local time, and thus is a special
case of the theory of Donsker and Varadhan [8]. So in a sense, these systems are extremely
well understood. It turns out that the limiting process for interactions like (6) is a Markov
process. This is not the case for the actual system (1), which shows that although (6)
and (1) may look similar, they yield very different limiting objects. In the language of
statistical mechanics, (6) is a mean field interaction, while (1) is a local interaction.

To link (1) with statistical mechanics, more precisely with the theory of lattice spin
systems, we discretize (1) by replacing Brownian motion with a random walk with state
space Rd and Gaussian step size distribution. We then obtain a finite volume Gibbs
measure on a one-dimensional system of Rd-valued spins, with single site potential V ,
quadratic nearest neighbour interaction and long range pair interaction W . The reference
measure is the product of d-dimensional Lebesgue-measures. An equivalent description of
this spin system, a little bit closer to (1), is to incorporate the nearest-neighbour interaction
into the reference measure, which then becomes the measure of a random walk pinned at
−T and T .

Although we will not do it here, our method can be easily adapted to the lattice context,
where it yields a new way of proving existence of Gibbs measures for one-dimensional
systems of unbounded spins. For such systems, extremely powerful methods are already
available: there is the superstability estimate by D. Ruelle [17], applied in [12], which
has the big advantage of not being restricted to one-dimensional systems; there are the
results of R. L. Dobrushin [7, 9], which are valid only for one-dimensional systems, but
extremely general otherwise. However, superstability corresponds to rapidly growing single
site potential, while one of Dobrushin’s few restrictions is that the interaction energy
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between left and right half-space must be bounded. Thus our method covers some new
situations in the discrete context also.

Finally, although it should have become clear that Gibbs measures are interesting
objects also from a purely probabilistic point of view, the original motivation for studying
them is a physical one. Nelson [15] first used measures with a structure similar to (1) with
a W of the type given in (2) to study the ultraviolet divergence in a model of a quantum
particle coupled to a scalar bosonic field, nowadays known as Nelson’s model. In [20],
Gibbs measures are used to estimate the effective mass of the polaron. Recently [14, 2]
study various aspects of the ground state of Nelson’s model by using Gibbs measures.

2 Finite volume Gibbs measures

We start by specifying conditions on the potentials V and W appearing in (1). A mea-
surable function V : Rd → R is said to be in the Kato class [19], V ∈ K(Rd), if

sup
x∈R

∫
{|x−y|≤1}

|V (y)| dy <∞ in case d = 1,

and
lim
r→0

sup
x∈Rd

∫
{|x−y|≤r}

g(x− y)|V (y)| dy = 0 in case d ≥ 2.

Here,

g(x) =
{
− ln |x| if d = 2
|x|2−d if d ≥ 3.

V is locally in the Kato class, V ∈ Kloc(Rd), if V 1K ∈ K(Rd) for each compact set K ⊂ Rd.
V is Kato-decomposable [4] if

V = V + − V − with V − ∈ K(Rd), V + ∈ Kloc(Rd),

where V + is the positive part and V − is the negative part of V .
Our conditions on V are:

(V1): V : Rd → R is Kato-decomposable.

(V2): The Schrödinger operator

H0 = −1
2
∆ + V

(where ∆ denotes the Laplace operator) acting in L2(Rd) fulfills inf spec(H0) = 0.
Moreover, H0 has a unique, strictly positive ground state ψ0 ∈ L2(Rd)∩L1(Rd), i.e.
0 is an eigenvalue of multiplicity one with corresponding eigenfunction ψ0.

Condition (V1) guarantees that the factor exp(−
∫ T
−T V (xs) ds) appearing in (1) is

integrable with respect to Brownian motion [19]. The existence of a ground state in
(V2) ensures the existence of an infinite volume Gibbs measure in case W = 0, while
inf spec(H0) = 0 is included for convenience and can be achieved by simply adding a
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constant to V and changing the normalizing constant in (1) accordingly. Finally, ψ0 ∈ L1

will be needed in the proof of Theorem 3.2, but is only a mild restriction, since in most
cases of interest ψ0(x) decays exponentially for large x [6].

Examples for potentials V that fulfill (V 1) and (V 2) are continuous functions bounded
below and growing at infinity, as well as functions bounded above but with the negative
part having Coulomb type singularities.

Schrödinger operators with Kato-decomposable potentials have many nice properties
[19]. In this paper we will need the fact that the kernel Kt(x, y) of e−tH0 uniformly
bounded and bounded away from zero on compact sets, and that y 7→ Kt(x, y) is integrable
uniformly in x.

Turning to conditions on W , let us write

HΛ(x) = −
∫∫

Λ
W (xt, xs, |t− s|) ds dt (x ∈ C(R,Rd)) (7)

with Λ ⊂ R2. In case Λ = [−T, T ]2, we simply write HT (x). C(0)(R,Rd) will denote
functions which are continuous with the possible exception of the point 0 but have left
and right hand side limits there. For τ > 0 consider the map

θ(0)
τ : C(R,Rd) → C(0)(R,Rd), (θ(0)

τ x)t =
{
xt+τ if t ≥ 0,
xt−τ if t < 0.

(8)

Finally, put
α = lim inf

|x|→∞
V (x) ≤ ∞. (9)

From the way this constant will enter into our proofs it will be clear that really the quantity

lim inf
|x|→∞

V (x)− inf spec(H0)

is the important one, a fact that is obscured by our choice inf spec(H0) = 0 in (V2).
Our conditions on W are

(W1): There exists C∞ <∞ such that∫ ∞

−∞
|W (x0, xs, |s|)| ds < C∞ and

∫ ∞

−∞
|W (xs, x0, |s|)| ds < C∞, (10)

uniformly in x ∈ C(R,Rd).

(W2): There exist D ≥ 0 and 0 ≤ C < α such that

HT (x) ≤ HT (θ(0)
τ x) + Cτ +D (11)

for all T, τ > 0 and all x ∈ C(R,Rd).
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An immediate consequence of (W1) is∣∣HR×[−S,S](x)
∣∣ ≤ 2C∞S, and

∣∣H[−S,S]×R(x)
∣∣ ≤ 2C∞S. (12)

(12) will be used frequently below.
(W2) looks a little mysterious at first, but the proof of Theorem 3.2 will show how it

comes about naturally. To see when (W2) is fulfilled, note that by (12),

−
∫ T

0
ds

∫ T

0
dtW (xt, xs, |t− s|) ≤ 4C∞τ −

∫ T+τ

τ
ds

∫ T+τ

τ
dtW (xt, xs, |t− s|) =

= 4C∞τ −
∫ T

0
ds

∫ T

0
dtW (xt+τ , xs+τ , |t− s|),

and similarly for the region [−T, 0]2. Thus, if we suppose

I = sup
x∈C(R,Rd)

∫ 0

−∞
ds

∫ ∞

0
dt |W (xt, xs, |t− s|)| <∞,

then 8C∞ < α is a sufficient condition for (W2). In case I = ∞, it is not hard to see that
if there exist L,M > 0 with∫ 0

−T
ds

∫ T

0
dt(W (xs, xt, |s− t|)−W (xs, xt, |s− t|+ 2τ)) ≤ Lτ +M (13)

uniformly in x ∈ C(R,Rd) and T > 0, then 12C∞ + L < α is a sufficient condition for
(W2). (13) can be checked directly for many choices of W , and is in particular true if
t 7→ W (x, y, t) is increasing for t > 0 and each fixed x, y ∈ Rd. This covers the physically
important case

W (x, y, |t|) = − 1
(|x− y|2 + |t|2 + 1)

of the massless Nelson model [5, 13]. On the other hand, for

W (x, y, |t|) =

{
− 1
|t|2+1

if |x− y| ≤ 2t
0 otherwise

(x, y ∈ R) together with the path xt = t, we find that
∫ 0
−T ds

∫ T
0 dtW (xs, xt, |t−s|) diverges

as T → ∞, but e.g.
∫ 0
−T ds

∫ T
0 dtW (xs−1, xt+1, |t − s|) = 0. Thus (W2) need not hold in

general.
We now construct finite volume Gibbs measures. We will take a point of view that

differs slightly from the one taken in equation 1 by incorporating the single site potential
V into the reference measure. This leads to a P (φ)1-process [18]. To make the paper
reasonably self-contained, we include a short description of this process.

The P (φ)1-process corresponding to the potential V is the stationary solution of the
stochastic differential equation

dXt =
∇ψ0

ψ0
(Xt) dt+ dBt, (14)
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where Bt denotes Brownian motion in Rd. Remember that ψ0 is the ground state of H0.
The measure on C(R,Rd) corresponding to this process will be denoted by µ0 and identified
with the process. µ0 is a stationary strong Markov process with generator H̃0 = ψ−1

0 H0ψ0,
where ψ0 and ψ−1

0 denote operators of multiplication.
The tool that links (14) and (1) is the Feynman-Kac formula. It says that for a bounded

interval I = [0, T ] ⊂ R and a µ0-integrable, FI -measurable function f ,∫
f(x) dµ0(x) =

∫
ψ0(x0)e−

R T
0 V (xs) dsf(x)ψ0(xT ) dW(x). (15)

Here, W denotes the infinite mass Wiener measure, and FI is the σ-field over C(R,Rd)
generated by the point evaluations with points inside I. A corresponding notation for
σ-fields will be used throughout the paper.

By (15), the invariant measure of µ0 has the Lebesgue-density ψ2
0. Moreover, a refined

version of the Feynman-Kac formula [18] shows that the transition density of µ0 is given
in terms of the kernel Kt(x, y) of e−tH by

Eµ0(f(xt)|F{0})(y) =
1

ψ0(y)

∫
Kt(y, z)ψ0(z)f(z) dz (y ∈ Rd). (16)

We perturb the process µ0 by the pair potential W , i.e. for T > 0 we define the
probability measure µT on C(R,Rd) by

dµT (x) =
1
ZT

e−HT (x) dµ0(x), (17)

where
ZT =

∫
e−HT (x) dµ0(x)

is the normalizing constant. Comparing (17) and (1), we see that instead of pinning the
path to y, z ∈ R at time −T resp. T (“sharp boundary condition”), we now allow it to
fluctuate according to µ0 outside [−T, T ], resulting in a “smeared-out boundary condition”.
This is technically easier to handle and, as we will see in the course of the paper, good
enough to prove existence of an infinite volume Gibbs measure.

Let us now check that µT is a finite volume Gibbs measure with respect to the potential
W and the reference measure µ0. For S > 0 write TS instead of F[−S,S]c , and for x̄ ∈
C(R,Rd) denote by µS,x̄0 the version of the regular conditional expectation µ0(.|TS) that
is given by

dµS,x̄0 (x) =
1

ZS(x̄)
exp

(
−
∫ S

−S
V (xs) ds

)
d
(
W x̄

[−S,S] ⊗ δx̄[−S,S]c

)
(x). (18)

Here, δx̄[−S,S]c is the point measure on C([−S, S]c,Rd) concentrated in x̄|[−S,S]c , W x̄
S is

pinned Brownian motion starting at time −S in x̄(−S) and ending at time S in x̄(S), and
ZS(x̄) is the normalizing constant. Moreover, for S < T define

Λ(S, T ) = ([−T, T ]× [−S, S]) ∪ ([−S, S]× [−T, T ]) ⊂ R2, and (19)

dµS,x̄T (x) =
1

ZST (x̄)
exp(HΛ(S,T )(x)) dµ

S,x̄
0 (x). (20)
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In (20), ZST (x̄) = E
µS,x̄

0
(eHΛ(S,T )) is again the normalizing constant.

Lemma 2.1 For each S < T , x̄ 7→ µS,x̄T is a version of the regular conditional expectation
µT (.|TS). In other words, µT is a (finite volume) Gibbs measure with reference measure
µ0 and potential W .

Proof: Let f, g ∈ L∞(C(R,Rd)), and suppose g is T -measurable. Then

ZT

∫
g(x̄)E

µS,x̄
T

(f) dµT (x̄) =

= Eµ0

(
Eµ0

(
g

1
Eµ0(e

HΛ(S,T ) |TS)
Eµ0(fe

HΛ(S,T ) |TS)eH[−T,T ]2

∣∣∣TS)) =

= Eµ0

(
g
Eµ0(fe

HΛ(S,T ) |TS)
Eµ0(e

HΛ(S,T ) |TS)
e
H[−T,T ]2\Λ(S,T )Eµ0

(
eHΛ(S,T )

∣∣∣TS)) =

= ZTEµT (fg).

Dividing by ZT finishes the proof. �

3 Infinite volume Gibbs measures

We say that a sequence νn of measures on C(R,Rd) converges locally weakly to a measure
ν if for each bounded interval I ⊂ R, the restrictions of νn to FI converge weakly to the
restriction of ν to FI . It is easy to see that, when C(R,Rd) equipped with the topology
of uniform convergence on compact sets, local weak convergence is equivalent to weak
convergence.

An infinite volume cluster point of a family (νT )T>0 of probability measures is a cluster
point of any sequence (νtn)n∈N, where tn →∞ as n→∞.

We will show that the family (µT ) is relatively compact in the topology of local weak
convergence. From this the existence of an infinite volume cluster point follows imme-
diately. To prove relative compactness, we use a well-known theorem due to Prohorov.
Recall that a family (νT ) of probability measures on Ω = C([a, b],Rd) is called tight if

(T1): For all η > 0 there exists R > 0 such that

νT ({x ∈ Ω : |xa| > R}) < η uniformly in T

.

(T2): For all η > 0 and all ε > 0 there exists δ > 0 such that

νT ({x ∈ Ω : wδ([a, b]) > ε}) < η uniformly in T,

where
wδ([a, b]) = sup{|xs − xt| : s, t ∈ [a, b], |s− t| < δ.}
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Prohorov’s theorem states that a tight family of measures is relatively compact in the
weak topology [3].

Usually, (T2) is rather harder to show than (T1). In our special case, however, (T2)
follows without too much work from (T1). Without loss in generality, we may (and will)
restrict our attention to [a, b] = [−S, S].

Lemma 3.1 Define (µT )T>0 as in (17), and assume (V1), (V2) and (W1). If (µT )T>0

fulfills (T1) then it fulfills (T2) as well.

Proof: Fix η > 0 and ε > 0. Now by (T1) and the time reversibility of µT for all T it
is possible to choose R such that

EµT (|x−S | > R) < η/4 and EµT (|xS | > R) < η/4 uniformly in T.

Putting
B = {|x−S | ≤ R and |xS | ≤ R} ⊂ C(R,Rd),

and
fδ(x) = 1{wδ([−S,S])>ε}(x) (x ∈ C(R,Rd)),

we clearly have µT (B) > 1− η/2 uniformly in T and |fδ| < 1, and thus

EµT (fδ) ≤ η/2 + EµT (fδ1B) = η/2 + EµT (EµT (fδ1B|TS)) . (21)

Using Lemma 2.1, we find

EµT (fδ1B|TS)(x̄) =
1

ZST (x̄)

∫
eHΛ(S,T )(x)fδ(x)1B(x) dµS,x̄0 (x) ≤

≤ e8C∞S
∫
fδ(x)1B(x) dµS,x̄0 (x)

= e8C∞S
∫
fδ(x) dµ

S,x̄
0 (x)1B(x̄). (22)

The inequality above follows from (12) and the definition of ZST (x̄). Now it is easy to see
that the restriction of the family {µS,x̄0 : x̄ ∈ B} to F[−S,S] is tight. In fact, this follows
from the compactness of {x, y ∈ Rd : |x| ≤ R, |y| ≤ R}. Thus we can find δ > 0 such that

sup
x̄∈C(R,Rd)

∫
fδ(x) dµ

S,x̄
0 (x)1B(x̄) < e−8C∞S η

2
.

Using this in (22) and plugging the resulting expression into (21), we arrive at

µT (fδ) ≤ η/2 + (η/2)µT (1B) ≤ η,

which is what we had to show. �

Theorem 3.2 Assume (V1),(V2),(W1) and (W2). Then (µT )T>0 fulfills (T1).
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Proof: Since by (12) and the stationarity of µ0 we have

e−2|t|C∞
∫
f(xt) dµT (x) ≤

∫
f(x0) dµT (x) ≤ e2|t|C∞

∫
f(xt) dµT (x)

for all t ∈ R, T > 0 and f ∈ L∞(Rd), it will be sufficient to prove the claim for t = 0. We
do so in several steps.
Step 1: Let Eµ0(f |x0 = y) denote expectation with respect to the measure µ0 conditional
on x0 = y. Since x 7→ x0 has distribution ψ2

0dx, we have

µT (|x0| > R) =
1
ZT

∫
|y|>R

ψ2
0(y)Eµ0

(
eHT

∣∣∣x0 = y
)
dy. (23)

In the next few steps, we will show that there exists K > 0 and r > 0 such that for all
T > 0 and all y ∈ Rd,

Eµ0

(
eHT

∣∣∣x0 = y
)
≤ K

ψ0(y)
inf
|z|≤r

Eµ0

(
eHT

∣∣∣x0 = z
)
. (24)

Once we will have established (24), we can plug it into (23). Since moreover

1
ZT

inf
|z|≤r

Eµ0

(
eHT

∣∣∣x0 = z
)
≤ sup
|z|≤r

1
ψ2

0(z)
µT (|x0| ≤ r) ≤ K̃

by an expression analogous to (23), we get

µT (|x0| > R) ≤ KK̃

∫
|y|>R

ψ0(y) dy. (25)

The hypothesis ψ0 ∈ L1 from (V2) will then conclude the proof.
Step 2: In order to prove (24), we change the probability space we work on. Remember
that C(0) was defined before equation (8), and consider

J : C(0)(R,Rd) → C([0,∞[,R2d), (xt)t∈R 7→ (xt, x−t)t≥0. (26)

(Jx)0 ∈ R2d is defined via the left and right hand side limits of xt as t → 0, and J is a
bijection after making some choice for the value of x ∈ C(0)(R,Rd) at the point 0. We will
write x = (x′, x′′) for the elements of C([0,∞[,R2d).
The image of µ0(.|x0 = z) under J can be described explicitly. For z ∈ R2d denote by
µ̃z

0 the measure of the R2d-valued P (φ)1-process with potential Ṽ (x, y) = V (x) + V (y),
starting in z. Explicitly, if we write F̃T for the σ-field over C([0,∞[,R2d) generated by
point evaluations at points within [0, T ], then for every F̃T -measurable, bounded function
f we have∫

f(x) dµ̃z
0(x) =

1
ψ0(z′)ψ0(z′′)

∫
e−

R T
0 (V (x′s)+V (x′′s )) dsf(x)ψ0(x′T )ψ0(x′′T ) dWz(x). (27)

Here, Wz denotes 2d-dimensional Wiener measure conditional on {x0 = z = (z′, z′′)}, i.e.
Brownian motion starting in z. The Markov property and time reversibility of Brownian
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motion together with (15) imply that for each z ∈ Rd, µ̃(z,z)
0 is the image of µ0(.|x0 = z)

under J , i.e.
Eµ0(f ◦ J |x0 = z) = E

(z,z)
µ̃0

(f).

Here, E(z,z)
µ̃0

denotes expectation with respect to µ̃(z,z)
0 .

Now it is easy to check that

H̃T (x) ≡ HT ◦ J−1(x) = −
∫ T

0
ds

∫ T

0
dt
(
W (x′t, x

′
s, |s− t|) +W (x′′t , x

′′
s , |s− t|) +

+W (x′t, x
′′
s , |s+ t|) +W (x′′t , x

′
s, |s+ t|)

)
, (28)

and therefore
Eµ0

(
eHT

∣∣∣x0 = z
)

= E
(z,z)
µ̃0

(eH̃T ). (29)

Thus we reduced our problem to investigating the expectation of eH̃T with respect to the
strong Markov process µ̃z

0 as a function of the starting point z.
Step 3: First note that in the representation established in Step 2, hypothesis (11) takes
the form

H̃T (x) ≤ H̃T ◦ θτ (x) + Cτ +D for all x ∈ C([0,∞[,R2d), T, τ > 0. (30)

Here θτ = Jθ
(0)
τ J−1 is the usual time shift that maps (xt)t≥0 to (xt+τ )t≥0. Our strategy

is to use (30) together with the strong Markov property of µ̃0. For r > 0 let

τr(x) = inf{t ≥ 0 : |xt| ≤ r}

be the hitting time of the centered ball with radius r, and let Fτr be the corresponding
σ-field, i.e.

Fτr = {A ∈ F̃ : A ∩ {τr ≤ t} ∈ F̃t for all t ≥ 0}.

Then for each x ∈ R2d,

Ex(eH̃T ) = Ex(Ex(eH̃T |Fτr)) ≤ Ex(Ex(eH̃T ◦θτr eCτr+D|Fτr)) =

= Ex(eCτr+DEx(eH̃T ◦θτr |Fτr)) = Ex(eCτr+DExτr (eH̃T )) ≤
≤ sup

|y|≤r
Ey(eH̃T )Ex(eCτr+D). (31)

All expectations above and henceforth are with respect to µ̃0. It remains to get a good
estimate on the second factor on the right hand side of (31) and to estimate the supremum
in the first factor against an infimum. This will be done in Steps 4 and 5.
Step 4: Here we show that there exists r > 0 and γ > 0 such that for all x ∈ R2d we have

Ex(eCτr) ≤ 1 +
C ‖ψ0‖∞

γ

(
1

ψ0(x′)
+

1
ψ0(x′′)

)
. (32)

11



To do so, we pick γ with 0 < γ < α− C and r so large that V (x) > C + γ for all x ∈ Rd

with |x| > r/
√

2. Obviously,

{x ∈ R2d : |x| > r} ⊂ {x ∈ R2d : |x′| > r/
√

2} ∪ {x ∈ R2d : |x′′| > r/
√

2},

and with (27) it follows that

ψ0(z′)ψ0(z′′)µz
1(τr > t) =

=
∫
e−

R t
0 (V (x′s)+V (x′′s )) ds1{|xs|>r ∀s≤t}ψ0(x′t)ψ0(x′′t ) dWz(x) ≤

≤
∫
e−

R t
0 V (x′s) dse−

R t
0 V (x′′s ) ds

(
1{|(x′s)|>r/

√
2 ∀s≤t} + 1{|(x′′s )|>r/

√
2 ∀s≤t}

)
×

×ψ0(x′t)ψ0(x′′t ) dWz′(x′) dWz′′(x′′) =

= ψ0(z′′)
∫
e−

R t
0 V (x′s) ds1{|(x′s)|>r/

√
2 ∀s≤t}ψ0(x′t) dWz′(x′) +

+ψ0(z′)
∫
e−

R t
0 V (x′′s ) ds1{|(x′′s )|>r/

√
2 ∀s≤t}ψ0(x′′t ) dWz′′(x′′) ≤

≤ (ψ0(z′) + ψ0(z′′)) ‖ψ0‖∞ e−(C+γ)t.

The second equality above is due the eigenvalue equation e−tH0ψ0 = ψ0 and the Feynman-
Kac formula. It follows that

µ̃z
0(τr > t) ≤

(
1

ψ0(z′)
+

1
ψ0(z′′)

)
‖ψ0‖∞ e−(C+γ)t,

and using the equality

Ez(eCτr) = 1 +
∫ ∞

0
CeCtEz(τr > t) dt

we arrive at (32).
Step 5: Let r > 0 be as in Step 4. We will show that there exists M > 0 such that

sup
|y|≤r

Ey(eH̃T ) ≤M inf
|y|≤r

Ey(eH̃T ) (33)

uniformly in T > 0. Denote by Pt(x,y) the transition density from x to y in time t of the
process µ̃0. By (27) and (16) we have

Pt(x,y) =
ψ0(y′)ψ0(y′′)
ψ0(x′)ψ0(x′′)

Kt(x′, y′)Kt(x′′, y′′). (34)

ψ0 and Kt are both uniformly bounded and bounded away from zero on compact sets,
thus for each R > 0 the quantity

St(R, r) = sup
{
Pt(x, z)
Pt(y, z)

: x,y, z ∈ R2d, |x| ≤ r, |y| ≤ r, |z| ≤ R

}
12



is finite. Defining H̃1
T like in (28) but with the integrals starting at 1 rather than at 0, we

see from (12) that
H̃T (x)− 4C∞ ≤ H̃1

T (x) ≤ H̃T (x) + 4C∞

for all x and all T . Putting B = {|x1| < R}, for each y with |y| < r we have

Ey(eH̃T ) ≤ e4C∞Ey(1BeH̃
1
T ) + eC+DEy(1BceH̃T ◦θ1). (35)

Defining H̄T as in (28) but with |s+ t+ 2| appearing instead of |s+ t| everywhere, in the
first term on the right hand side of (35) we find

Ey(1BeH̃
1
T ) =

∫
|z|<R

P1(y, z)Ez(eH̄T−1) dz ≤

≤ S1(R, r)
∫
|z|≤R

P1(x, z)Ez(eH̄T−1) dz =

= S1(R, r)Ex(1BeH̃
1
T ) ≤ S1(R, r)e4C∞Ex(eH̃T ) (36)

for each x with |x| ≤ r. Turning to the second term on the right hand side of (35),
equations (31) and (32) give

Ey(1BceH̃T ◦θ1) =
∫
|z|>R

P1(y, z)Ez(eH̃T ) dz ≤

≤ sup
|x|≤r

Ex(eH̃T )
∫
|z|>R

P1(y, z)Ez(eCτr+D) dz ≤ (37)

≤ sup
|x|≤r

Ex(eH̃T )eD
∫
|z|>R

P1(y, z)
(

1 +
C ‖ψ0‖∞

γ

(
1

ψ0(z′)
+

1
ψ0(z′′)

))
dz.

By (34) and the eigenvalue equation, we have∫
P1(y, z)

(
1

ψ0(z′)
+

1
ψ0(z′′)

)
dz =

=
1

ψ0(y′)

∫
K1(y′′, z) dz +

1
ψ0(y′′)

∫
K1(y′, z) dz. (38)

By (V1), the above integrals are bounded in y′ and y′′, respectively [19], and thus the
right hand side of (38) is uniformly bounded on {y : |y| < r}. This implies that there
exists R̄ > 0 and δ < 1 such that∫

|z|>R̄
P1(y, z)

(
1 +

C ‖ψ0‖∞
γ

(
1

ψ0(z′)
+

1
ψ0(z′′)

))
dz ≤ e−(C+2D)δ

uniformly on {y : |y| < r}. Plugging this result together with (36) into (35), we arrive at

Ey(eH̃T ) ≤ S1(R̄, r)e8C∞Ex(eH̃T ) + δ sup
|z|≤r

Ez(eH̃T ), (39)

13



which is valid for all x,y with |x|, |y| ≤ r. By taking the supremum over y and the
infimum over x in (39) and rearranging, we find

sup
|y|≤r

Ey(eH̃T ) ≤ S1(R̄, r)e8C∞

1− δ
inf
|y|≤r

Ey(eH̃T ),

which concludes Step 5 and the proof. �
The two previous statements show relative compactness of the restrictions {µT |F[−S,S]

:
T > 0} for any S > 0. From here, it is only a small step to relative compactness in the
topology of local weak convergence.

Theorem 3.3 Assume (V1),(V2),(W1) and (W2). Then {µT : T ≥ 0} is relatively
compact in the topology of local weak convergence. Consequently, the family has an infinite
volume cluster point.

Proof: Take S > 0 and fix any sequence (Tn) ⊂ R+. By Lemma 3.1, Theorem 3.2 and
the tightness argument, for each fixed S > 0 there exists a subsequence (tn) of (Tn) such
that (µtn |F[−S,S]

) converges weakly to some probability measure µ∞ on C([−S, S],Rd) . In
case L = lim supn→∞ Tn <∞ we are done by choosing S > L. In case L = ∞, we observe
that convergence of (µtn |F[−R,R]

)n∈N implies convergence of (µtn |F[−S,S]
)n∈N if R > S, and

thus a diagonal sequence argument does the job. This second case also provides us with
an infinite volume cluster point. �

Let us denote by µ any cluster point of the family (µT )T>0 obtained by Theorem 3.3.
Due to the good control on the stationary density we obtain in Theorem 3.2, we have the
following estimate on the growth of paths under µ.

Lemma 3.4 Let f : R+ → R+ be monotone increasing with f(x) → ∞ as x → ∞, and
suppose that

∞∑
n=1

∫
|y|>f(n)

ψ0(y) dy <∞ (40)

Then for µ-almost every path x ∈ C(R,Rd), we have

lim sup
|t|→∞

|xt|
f(|t|)

≤ 1.

Proof: By path continuity and time reversibility, it is obviously enough to prove that
for each k ∈ N,

µ

(
lim sup
n→∞

|x(n/k)|
f(n/k)

> 1
)

= 0.

Since the above event is equal to {x : |xn/k| > f(n/k) infinitely often}, the first Borel-
Cantelli lemma will yield the result once we have checked that

∞∑
n=1

µ(|xn/k| > f(n/k)) <∞. (41)
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By the stationarity of µ and equation (25), there exists a constant M such that

µ(|xn/k| > f(n/k)) = µ(|x0| > f(n/k)) ≤M

∫
|y|>f(n/k)

ψ0(y) dy

for n large enough. Since
∞∑
n=1

∫
|y|>f(n/k)

ψ0(y) dy ≤ k

∞∑
n=1

∫
|y|>f(n)

ψ0(y) dy,

(40) implies (41). �
In many cases, estimates on the decay of ψ0 can be obtained via V . In [6] it is shown

that for s ≥ 0 the estimate lim inf |x|→∞ V (x)/|x|2s > 0 implies the existence of constants
A > 0, β > 0 such that

ψ0(y) ≤ A exp(−β|y|s+1)

for all y ∈ Rd. In this case, Lemma 3.4 implies

lim sup
|t|→∞

|xt|
(γ ln |t|)s+1

= 0

for each γ > 1/β and µ-almost all x ∈ C(R,Rd). This result has been obtained (for s > 1)
in [13] via the cluster expansion.

We conclude this paper by showing the infinite volume analogue of Lemma 2.1. We
refer to Section 2 for notation and additionally introduce

Λ(S) = (R× [−S, S]) ∪ ([−S, S]× R), (42)

dµS,x̄ =
1

ZS(x̄)
exp(HΛ(S)(x)) dµ

S,x̄
0 (x). (43)

Note that the normalizing constant ZS(x̄) is finite for each x̄ ∈ C(R,Rd) due to (12).

Proposition 3.5 For each S > 0 and each infinite volume cluster point µ of (µT ), x̄ 7→
µS,x̄T is a version of the regular conditional probability µ(.|TS). In other words, µ is a Gibbs
measure for the reference measure µ0 and the potential W .

Proof: By Lemma 2.1, we have for f, g ∈ L∞(C(R,Rd)) with TS-measurable g that∫
g(x̄)E

µS,x̄
T

(f) dµT (x̄) = EµT (fg). (44)

We have to show that (44) remains true when we replace µT by µ and µS,x̄T by µS,x̄. By
a monotone class argument, we may in assume that f and g are F[−R,R]-measurable for
some R > S. Taking a sequence (tn) such that µtn converges to µ, we immediately see that
the right hand side of (44) converges to Eµ(fg). As for the left hand side, (12) guarantees
that HΛ(S,T )(q) converges to HΛ(S)(q) uniformly in q ∈ C(R,Rd) as T →∞, and thus the
left hand side converges to

∫
g(x̄)EµS,x̄(f) dµ(x̄). �
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